70 resultados para Pacto Global
em Indian Institute of Science - Bangalore - Índia
Resumo:
Some of the well known formulations for topology optimization of compliant mechanisms could lead to lumped compliant mechanisms. In lumped compliance, most of the elastic deformation in a mechanism occurs at few points, while rest of the mechanism remains more or less rigid. Such points are referred to as point-flexures. It has been noted in literature that high relative rotation is associated with point-flexures. In literature we also find a formulation of local constraint on relative rotations to avoid lumped compliance. However it is well known that a global constraint is easier to handle than a local constraint, by a numerical optimization algorithm. The current work presents a way of putting global constraint on relative rotations. This constraint is also simpler to implement since it uses linearized rotation at the center of finite-elements, to compute relative rotations. I show the results obtained by using this constraint oil the following benchmark problems - displacement inverter and gripper.
Resumo:
It is shown that within the framework of a linear five-level quasi-geostrophic steady state global model the middle latitude systems can always have significant influence on the Asian summer monsoonal system through the lower tropospheric monsoonal westerly window region around 80°E. It is hypothesized that quasistationarity of the middle latitude longwave systems results in stronger teleconnections through this window and the consequent monsoon breaks when the phase is right.
Resumo:
The paper deals with the basic problem of adjusting a matrix gain in a discrete-time linear multivariable system. The object is to obtain a global convergence criterion, i.e. conditions under which a specified error signal asymptotically approaches zero and other signals in the system remain bounded for arbitrary initial conditions and for any bounded input to the system. It is shown that for a class of up-dating algorithms for the adjustable gain matrix, global convergence is crucially dependent on a transfer matrix G(z) which has a simple block diagram interpretation. When w(z)G(z) is strictly discrete positive real for a scalar w(z) such that w-1(z) is strictly proper with poles and zeros within the unit circle, an augmented error scheme is suggested and is proved to result in global convergence. The solution avoids feeding back a quadratic term as recommended in other schemes for single-input single-output systems.
Resumo:
An important question of biological relevance is the polymorphism of the double-helical DNA structure in its free form, and the changes that it undergoes upon protein-binding. We have analysed a database of free DNA crystal structures to assess the inherent variability of the free DNA structure and have compared it with a database of protein-bound DNA crystal structures to ascertain the protein-induced variations.
Resumo:
Abstract is not available.
Resumo:
A high temperature source has been developed and coupled to a high resolution Fourier transform spectrometer to record emission spectra of acetylene around 3 mu m up to 1455 K under Doppler limited resolution (0.015 cm(-1)). The nu(3)-ground state (GS) and nu(2)+nu(4)+nu(5)(Sigma(+)(u) and Delta(u))-GS bands and 76 related hot bands, counting e and f parities separately, are assigned using semiautomatic methods based on a global model to reproduce all related vibration-rotation states. Significantly higher J-values than previously reported are observed for 40 known substates while 37 new e or f vibrational substates, up to about 6000 cm(-1), are identified and characterized by vibration-rotation parameters. The 3 811 new or improved data resulting from the analysis are merged into the database presented by Robert et al. [Mol. Phys. 106, 2581 (2008)], now including 15 562 lines accessing vibrational states up to 8600 cm(-1). A global model, updated as compared to the one in the previous paper, allows all lines in the database to be simultaneously fitted, successfully. The updates are discussed taking into account, in particular, the systematic inclusion of Coriolis interaction.
Resumo:
We investigate the ability of a global atmospheric general circulation model (AGCM) to reproduce observed 20 year return values of the annual maximum daily precipitation totals over the continental United States as a function of horizontal resolution. We find that at the high resolutions enabled by contemporary supercomputers, the AGCM can produce values of comparable magnitude to high quality observations. However, at the resolutions typical of the coupled general circulation models used in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, the precipitation return values are severely underestimated.
Resumo:
The sea level pressure (SLP) variability in 30-60 day intraseasonal timescales is investigated using 25 years of reanalysis data addressing two issues. The first concerns the non-zero zonal mean component of SLP near the equator and its meridional connections, and the second concerns the fast eastward propagation (EP) speed of SLP compared to that of zonal wind. It is shown that the entire globe resonates with high amplitude wave activity during some periods which may last for few to several months, followed by lull periods of varying duration. SLP variations in the tropical belt are highly coherent from 25A degrees S to 25A degrees N, uncorrelated with variations in mid latitudes and again significantly correlated but with opposite phase around 60A degrees S and 65A degrees N. Near the equator (8A degrees S-8A degrees N), the zonal mean contributes significantly to the total variance in SLP, and after its removal, SLP shows a dominant zonal wavenumber one structure having a periodicity of 40 days and EP speeds comparable to that of zonal winds in the Indian Ocean. SLP from many of the atmospheric and coupled general circulation models show similar behaviour in the meridional direction although their propagation characteristics in the tropical belt differ widely.
Resumo:
It is shown that pure exponential discs in spiral galaxies are capable of supporting slowly varying discrete global lopsided modes, which can explain the observed features of lopsidedness in the stellar discs. Using linearized fluid dynamical equations with the softened self-gravity and pressure of the perturbation as the collective effect, we derive self-consistently a quadratic eigenvalue equation for the lopsided perturbation in the galactic disc. On solving this, we find that the ground-state mode shows the observed characteristics of the lopsidedness in a galactic disc, namely the fractional Fourier amplitude A(1), increases smoothly with the radius. These lopsided patterns precess in the disc with a very slow pattern speed with no preferred sense of precession. We show that the lopsided modes in the stellar disc are long-lived because of a substantial reduction (approximately a factor of 10 compared to the local free precession rate) in the differential precession. The numerical solution of the equations shows that the groundstate lopsided modes are either very slowly precessing stationary normal mode oscillations of the disc or growing modes with a slow growth rate depending on the relative importance of the collective effect of the self-gravity. N-body simulations are performed to test the spontaneous growth of lopsidedness in a pure stellar disc. Both approaches are then compared and interpreted in terms of long-lived global m = 1 instabilities, with almost zero pattern speed.
Resumo:
We establish a unified model to explain Quasi-Periodic-Oscillation (QPO) observed from black hole and neutron star systems globally. This is based on the accreting systems thought to be damped harmonic oscillators with higher order nonlinearity. The model explains multiple properties parallelly independent of the nature of the compact object. It describes QPOs successfully for several compact sources. Based on it, we predict the spin frequency of the neutron star Sco X-1 and the specific angular momentum of black holes GRO J1655-40, GRS 1915+105.
Resumo:
DNA sequences containing a stretch of several A:T basepairs without a 5'-TA-3' step are known as A-tracts and have been the subject of extensive investigation because of their unique structural features such as a narrow minor groove and their crucial role in several biological processes. One of the aspects under investigation has been the influence of the 5-methyl group of thymine on the properties of A-tracts. Detailed molecular dynamics simulation studies of the sequences d(CGCAAAUUUGCG) and d(CGCAAATTTGCG) indicate that the presence of the 5-methyl group in thymine increases the frequency of a narrow minor groove conformation, which could facilitate its specific recognition by proteins, and reduce its susceptibility to cleavage by DNase I. The bias toward a wider minor groove in the absence of the thymine 5-methyl group is a static structural feature. Our results also indicate that the presence of the thymine 5-methyl group is necessary for calibrating the backbone conformation and the basepair and dinucleotide step geometry of the core A-tract as well as the flanking CA/TG and the neighboring GC/GC steps, as observed in free and protein-bound DNA. As a consequence, it also fine-tunes the curvature of the longer DNA fragment in which the A-tract is embedded.
Resumo:
Recent studies have shown that changes in global mean precipitation are larger for solar forcing than for CO2 forcing of similar magnitude.In this paper, we use an atmospheric general circulation model to show that the differences originate from differing fast responses of the climate system. We estimate the adjusted radiative forcing and fast response using Hansen's ``fixed-SST forcing'' method.Total climate system response is calculated using mixed layer simulations using the same model. Our analysis shows that the fast response is almost 40% of the total response for few key variables like precipitation and evaporation. We further demonstrate that the hydrologic sensitivity, defined as the change in global mean precipitation per unit warming, is the same for the two forcings when the fast responses are excluded from the definition of hydrologic sensitivity, suggesting that the slow response (feedback) of the hydrological cycle is independent of the forcing mechanism. Based on our results, we recommend that the fast and slow response be compared separately in multi-model intercomparisons to discover and understand robust responses in hydrologic cycle. The significance of this study to geoengineering is discussed.
Resumo:
Climate change is one of the most important global environmental challenges, with implications for food production, water supply, health, energy, etc. Addressing climate change requires a good scientific understanding as well as coordinated action at national and global level. This paper addresses these challenges. Historically, the responsibility for greenhouse gas emissions' increase lies largely with the industrialized world, though the developing countries are likely to be the source of an increasing proportion of future emissions. The projected climate change under various scenarios is likely to have implications on food production, water supply, coastal settlements, forest ecosystems, health, energy security, etc. The adaptive capacity of communities likely to be impacted by climate change is low in developing countries. The efforts made by the UNFCCC and the Kyoto Protocol provisions are clearly inadequate to address the climate change challenge. The most effective way to address climate change is to adopt a sustainable development pathway by shifting to environmentally sustainable technologies and promotion of energy efficiency, renewable energy, forest conservation, reforestation, water conservation, etc. The issue of highest importance to developing countries is reducing the vulnerability of their natural and socio-economic systems to the projected climate change. India and other developing countries will face the challenge of promoting mitigation and adaptation strategies, bearing the cost of such an effort, and its implications for economic development.
Resumo:
Despite a significant growth in food production over the past half-century, one of the most important challenges facing society today is how to feed an expected population of some nine billion by the middle of the 20th century. To meet the expected demand for food without significant increases in prices, it has been estimated that we need to produce 70-100 per cent more food, in light of the growing impacts of climate change, concerns over energy security, regional dietary shifts and the Millennium Development target of halving world poverty and hunger by 2015. The goal for the agricultural sector is no longer simply to maximize productivity, but to optimize across a far more complex landscape of production, rural development, environmental, social justice and food consumption outcomes. However, there remain significant challenges to developing national and international policies that support the wide emergence of more sustainable forms of land use and efficient agricultural production. The lack of information flow between scientists, practitioners and policy makers is known to exacerbate the difficulties, despite increased emphasis upon evidence-based policy. In this paper, we seek to improve dialogue and understanding between agricultural research and policy by identifying the 100 most important questions for global agriculture. These have been compiled using a horizon-scanning approach with leading experts and representatives of major agricultural organizations worldwide. The aim is to use sound scientific evidence to inform decision making and guide policy makers in the future direction of agricultural research priorities and policy support. If addressed, we anticipate that these questions will have a significant impact on global agricultural practices worldwide, while improving the synergy between agricultural policy, practice and research. This research forms part of the UK Government's Foresight Global Food and Farming Futures project.
Resumo:
The collapse of a spherical (cylindrical) cavity in air is studied analytically. The global solution for the entire domain between the sound front, separating the undisturbed and the disturbed gas, and the vacuum front is constructed in the form of infinite series in time with coefficients depending on an ldquoappropriaterdquo similarity variable. At timet=0+, the exact planar solution for a uniformly moving cavity is assumed to hold. The global analytic solution of this initial boundary value problem is found until the collapse time (=(gamma–1)/2) for gamma le 1+(2/(1+v)), wherev=1 for cylindrical geometry, andv=2 for spherical geometry. For higher values of gamma, the solution series diverge at timet — 2(beta–1)/ (v(1+beta)+(1–beta)2) where beta=2/(gamma–1). A close agreement is found in the prediction of qualitative features of analytic solution and numerical results of Thomaset al. [1].