66 resultados para PROGRAMES OF ACTION
em Indian Institute of Science - Bangalore - Índia
Resumo:
The antifungal drug, miconazole nitrate, inhibits the growth of several species of Candida. Candida albicans, one of the pathogenic species, was totally inhibited at a concentration of approximately 10 μg/ml. Endogenous respiration was unaffected by the drug at a concentration as high as 100 μg/ml, whereas exogenous respiration was markedly sensitive and inhibited to an extent of 85%. The permeability of the cell membrane was changed as evidenced by the leakage of 260-nm absorbing materials, amino acids, proteins, and inorganic cations. The results we present clearly show that the drug alters the cellular permeability, and thus the exogenous respiration becomes sensitive to the drug.
Resumo:
The antifungal drug, miconazole nitrate, inhibits the growth of several species of Candida. Candida albicans, one of the pathogenic species, was totally inhibited at a concentration of approximately 10 µg/ml. Endogenous respiration was unaffected by the drug at a concentration as high as 100 µg/ml, whereas exogenous respiration was markedly sensitive and inhibited to an extent of 85%. The permeability of the cell membrane was changed as evidenced by the leakage of 260-nm absorbing materials, amino acids, proteins, and inorganic cations. The results we present clearly show that the drug alters the cellular permeability, and thus the exogenous respiration becomes sensitive to the drug.
Resumo:
The binding of chromomycin A3, an antitumour antibiotic, to various DNA and chromatin isolated from mouse and rat liver, mouse fibrosarcoma and Yoshida ascites sarcoma cells was studied spectrophotometrically at 29°C in 10−2 M Tris-HCl buffer, pH 8.0, containing small amounts of MgCl2 (4.5 · 10−5−25 · 10−5 M). An isobestic point at 415 nm was observed when chromomycin A3 was gradually titrated with Image and its spectrum shifted towards higher wavelength. The rates and extent of these spectral changes were found to be dependent on the concentration of Mg2+. The change in absorbance at 440 nm was used to calculate apparent binding constant (Ka p M−1) and sites per nucleotide (n) from Scatchard plots for various DNA and chromatins. As expected, values of n for chromatin (0.06–0.10) were found to be lower than that found for corresponding DNA (0.10–0.15). Apparently no such correlation exists between binding constants (Ka p M−1 · 10−4) of DNA (6.4–11.2) and of chromatin (3.1–8.3), but Ka p M−1 of chromatin isolated from mouse fibrosarcoma and Yoshida ascites sarcoma are 1.5–3 times higher than that found for mouse and rat liver chromatin. These differences may be taken to indicate structural difference in nucleoprotein complexes caused by neoplasia. The relevance of this finding to tumour suppressive action of chromomycin A3 is discussed.
Resumo:
Peroxidase from Mycobacterium tuberculosis H37Rv was purified to homogeneity. The homogeneous protein exhibits catalase and Y (Youatt's)-enzyme activities in addition to peroxidase activity. Further confirmation that the three activities are due to a single enzyme was accomplished by other criteria, such as differential thermal inactivation, sensitivity to different inhibitors, and co-purification. The Y enzyme (peroxidase) was separated from NADase (NAD+ glycohydrolase) inhibitor by gel filtration on Sephadex G-200. The molecular weights of peroxidase and NADase inhibitor, as determined by gel filtration, are 240000 and 98000 respectively. The Y enzyme shows two Km values for both isoniazid (isonicotinic acid hydrazide) and NAD at low and high concentrations. Analysis of the data by Hill plots revealed that the enzyme has one binding site at lower substrate concentrations and more than one at higher substrate concentration. The enzyme contains 6g-atoms of iron/mol. Highly purified preparations of peroxidases from different sources catalyse the Y-enzyme reaction, suggesting that the nature of the reaction may be a peroxidatic oxidation of isoniazid. Moreover, the Y-enzyme reaction is enhanced by O2. Isoniazid-resistant mutants do not exhibit Y-enzyme, peroxidase or catalase activities, and do not take up isoniazid. The Y-enzyme reaction is therefore implicated in the uptake of the drug.
Resumo:
A purified antitumor protein from the proteinaceous crystal of Bacillus thuringiensis subsp. thuringiensis inhibits the growth of Yoshida ascites sarcoma both in vivo and in vitro. Exogenous respiration of the tumor cells was unaffected by the protein at a concentration as high as 500 µg/ml. The antitumor protein inhibits the uptake and incorporation of labeled precursors into macromolecules. However, the ratio of incorporation over uptake is not affected by the protein. Further, the protein brings about the leakage of 260-nm-absorbing material, proteins, and 32P-labeled cellular constituents from the Yoshida ascites sarcoma cells. The results show that the action of the antitumor protein appears to alter the cellular permeability of the tumor cells.
Resumo:
δ-Aminolevulinate (ALA) dehydratase, the second and rate limiting enzyme of the heme biosynthetic pathway in the mold Neurospora crassa is induced maximally in 30 min by the addition of iron to iron-deficient cultures. The induction of the enzyme is blocked by cycloheximide, protoporphyrin, 8-azaguanine and cordycepin. Iron also brings about an increase in poly(A)-containing RNA synthesis under conditions of induction. The iron dependent increase in poly(A)-containing RNA synthesis is blocked by protoporphyrin. It is suggested that at the time intervals examined, bulk of the messenger RNA synthesized in response to iron addition represents the messenger for ALA dehydratase.
Resumo:
The effect of selenious acid as an addition agent in the electrodeposition of manganese was studied by analysing the current-potential curves for manganese deposition. The mechanism of action of this addition agent was found to be essentially similar to that proposed for sulphur dioxide, namely to affect the manganese deposition indirectly by influencing the hydrogen evolution reaction which is a parallel reaction at the electrode surface.
Resumo:
Neutral and cationic organometallic ruthenium(II) piano stool complexes of the type [(eta(6)-cymene)R-uCl(X)(Y)] (complexes R1-R8) has been synthesized and characterized. In cationic complexes, X, Y is either a eta(2) phosphorus ligand such as 1,1-bis(diphenylphosphino)methane (DPPM) and 1,2-bis(diphenylphosphino)ethane (DPPE) or partially oxidized ligands such as 1,2-bis(diphenylphosphino)methane monooxide (DPPMO) and 1,2-bis(diphenylphosphino)ethane monooxide (DPPEO) which are strong hydrogen bond acceptors. In neutral complexes. X is chloride and Y is a monodentate phosphorous donor. Complexes with DPPM and DPPMO ligands ([(eta(6)-cymene)Ru(eta(2)-DPPM)Cl]PF6 (R2), [(eta(6)-cymene)Ru(eta(2)-DPPMO)Cl]PF6 (R3), [(eta(6)-cymene)Ru(eta(1)-DPPM)Cl-2] (R5) and [(eta(6)-cymene)Ru(eta(1)-DPPMO)Cl-2] (R6) show good cytotoxicity. Growth inhibition study of several human cancer cell lines by these complexes has been carried out. Mechanistic studies for R5 and R6 show that inhibition of cancer cell growth involves both cell cycle arrest and apoptosis induction. Using an apoptosis PCR array, we identified the sets of antiapoptotic genes that were down regulated and pro-apoptotic genes that were up regulated. These complexes were also found to be potent metastasis inhibitors as they prevented cell invasion through matrigel. The complexes were shown to bind DNA in a non intercalative fashion and cause unwinding of plasmid DNA in cell-free medium by competitive ethidium bromide binding, viscosity measurements, thermal denaturation and gel mobility shift assays.
Resumo:
Further purification of indoleacetaldoxime (IAOX) hydro-lyase from Gibberella fujikuroi by DEAE-cellulose chromatography is described. The purified enzyme was activated by dehydroascorbic acid (DHA), ascorbic acid (AA), and pyridoxal phosphate (PALP) and was inhibited by thiol compounds and thiol reagents including phenylthiocyanate. Ferrous ions but not ferric ions activated the purified enzyme. The enzyme was activated by dihydrofolic acid but inhibited by tetrahydrofolic acid. Phenylacetaldoxime, a competitive inhibitor, afforded partial protection of the enzyme from the action of N-ethylmaleimide suggesting the involvement of a thiol function at the active site or substrate-binding site. The inhibition of the enzyme by 2,3-dimercaptopropanol was reversed by DHA, PALP, or frozen storage. KCN inhibition of the enzyme was reversed by PALP. NaBH4 reduction of the purified enzyme in the presence of PALP gave an active enzyme which was further activated by PALP or DHA but not by ferrous ions. These results suggested a "structural" role for PALP in the activity of IAOX hydro-lyase. Dilute solutions of the purified enzyme, obtained during DEAE-cellulose chromatography and concentrated using sucrose, showed enhanced activity upon frozen storage and thawing. The increase in activity of the enzyme during certain culture conditions, the activation and inhibition of the enzyme by several unrelated compounds, and the effect of freezing indicate that IAOX hydro-lyase is probably a metabolically regulated enzyme with a structure composed of subunits.
Resumo:
The binding characteristics of the antibiotics to nuclei and their effect on the permeability of nuclear membrane with respect to histones and ribonucleic acids have been investigated. The binding constant for chromomycin A3 was found to be 1.4 × 104M?1 and number of binding sites was equal to 3.48 ± 1.08 × 1012 molecules/nuclei. The antibiotic chromomycin A3 enhanced the uptake of lysine-rich histone, actinomycin D decreased the uptake and ethidium bromide had no effect. Chromomycin A3 also enhanced the release of acid insoluble fraction containing RNA from the nuclei, actinomycin D and ethidium bromide inhibited the release of acid insoluble fraction containing RNA. The relevance of this finding to the role of nuclear envelope in understanding the mechanism of action of the antibiotic has been discussed.
Resumo:
The mechanism of action of ribonuclease (RNase) T1 is still a matter of considerable debate as the results of x-ray, 2-D nmr and site-directed mutagenesis studies disagree regarding the role of the catalytically important residues. Hence computer modelling studies were carried out by energy minimisation of the complexes of RNase T1 and some of its mutants (His40Ala, His40Lys, and Glu58Ala) with the substrate guanyl cytosine (GpC), and of native RNase T1 with the reaction intermediate guanosine 2',3'-cyclic phosphate (G greater than p). The puckering of the guanosine ribose moiety in the minimum energy conformer of the RNase T1-GpC (substrate) complex was found to be O4'-endo and not C3'-endo as in the RNase T1-3'-guanylic acid (inhibitor/product) complex. A possible scheme for the mechanism of action of RNase T1 has been proposed on the basis of the arrangement of the catalytically important amino acid residues His40, Glu58, Arg77, and His92 around the guanosine ribose and the phosphate moiety in the RNase T1-GpC and RNase T1-G greater than p complexes. In this scheme, Glu58 serves as the general base group and His92 as the general acid group in the transphosphorylation step. His40 may be essential for stabilising the negatively charged phosphate moiety in the enzyme-transition state complex.