230 resultados para PARAMAGNETIC RESONANCE
em Indian Institute of Science - Bangalore - Índia
Resumo:
This paper reports on the liquid-helium-temperature (5 K) electron paramagnetic resonance (EPR) spectra of Cr3+ ions in the nanoparticles of SnO2 synthesized at 600 degrees C with concentrations of 0%, 0.1%, 0.5%, 1%, 1.5%, 2.0%, 2.5%, 3.0%, 5.0%, and 10%. Each spectrum may be simulated as overlap of spectra due to four magnetically inequivalent Cr3+ centers characterized by different values of the spin-Hamiltonian parameters. Three of these centers belong to Cr3+ ions in orthorhombic sites, situated near oxygen vacancies, characterized by very large zero-field splitting parameters D and E, presumably due to the presence of nanoparticles in the samples. The fourth EPR spectrum belongs to the Cr3+ ions situated at sites with tetragonal symmetry, substituting for the Sn4+ ion, characterized by a very small value of D. In addition, there appears a ferromagnetic resonance line due to oxygen defects for samples with Cr3+ concentrations of <= 2.5%. Further, in samples with Cr3+ concentrations of >2.5%, there appears an intense and wide EPR line due to the interactions among the Cr3+ ions in the clusters formed due to rather excessive doping; the intensity and width of this line increase with increasing concentration. The Cr3+ EPR spectra observed in these nanopowders very different from those in bulk SnO2 crystals.
Resumo:
EPR study of the vanadyl ion has been carried out in its paramagnetically dilute form in K2Zn(SO4)2·6H2O and K2Mg(SO4)2·6H2O at room temperature at X-band. The vanadyl ion enters the divalent metal site and preferentially orients itself in the direction of the water molecules forming the octahedron and forms the vanadyl sulfate pentahydrate complex. The g and A tensorscorresponding to the two populous V-O orientations have been analyzed to obtain the principal values and their direction cosines with respect to the crystallographics axes. It is found that the g and A tensor have the same principal frames of reference within the limits of eperimental error. A correlation between the metal-water distance and the populations of the different V-O orientations is observed.
Resumo:
Electron paramagnetic resonance (EPR) studies and magnetic measurements were carried out on single crystals of multiferroic DyMnO3 in hexagonal as well as orthorhombic structures. The interesting effect of strontium dilution on the frustrated antiferromagnetism of DyMnO3 is also probed using EPR. The line shapes are fitted to broad Lorentzian in the case of pure DyMnO3 and to modified Dysonian in the case of Dy0.5Sr0.5MnO3. The linewidth, integrated intensity, and geff derived from the signals are analyzed as a function of temperature. The results of magnetization measurements corroborate with EPR results. Our study clearly reveals the signature of frustrated magnetism in pure DyMnO3 systems. It is found that antiferromagnetic correlations in these systems persist even above the transition. Moreover, a spin-glass-like behavior in Dy0.5Sr0.5MnO3 is indicated by a steplike feature in the EPR signals at low fields.
Resumo:
A direct observation of ferroelectric domains in x-irradiated KH2AsO4 and KD2AsO4 using electron paramagnetic resonance (EPR), and in the case of KH2AsO4 also using electron-nuclear double-resonance (ENDOR), is reported. The nature of the observed domain splittings and consequently the effects of an externally applied electric field on the EPR and ENDOR spectra are explained. Moreover, the higher resolution possible with the ENDOR technique, has, for the first time, made it possible to use protons as microscopic probes and to identify in general lines from individual domains in all directions.
Resumo:
We report the first electron paramagnetic resonance studies of single crystals and powders of Pr0.6Ca0.4MnO3 in the 300-4.2 K range, covering the charge-ordering transition (Tco) at ~240 K and antiferromagnetic transition (TN) at ~170 K. The asymmetry parameter for the Dysonian single-crystal spectra shows an anomalous increase at Tco. Below Tco the g-value increases continuously, suggesting a gradual strengthening of the orbital ordering. The linewidth undergoes a sudden increase at Tco and continues to increase down to TN. The intensity increases as the temperature is decreased until Tco is reached, due to the renormalization of the magnetic susceptibility arising from the build-up of ferromagnetic correlations.
Resumo:
Single crystal E.P.R. studies of copper as a dopant in lithium potassium sulphate, lithium ammonium sulphate and lithium sodium sulphate have been carried out from room temperature down to 77K. The three Jahn-Teller (JT) systems behave very similarly to one another. The room temperature dynamic JT spectra with giso = 2·19 ± 0·01 and Aiso = ±(33 ± 4) times 10-4 cm-1 transform around 247 K to spectra characterized by randomly frozen-in axial strains with g‖ = 2·4307 ± 0·0005, g⊥ = 2·083 ± 0·001, A‖ = ±(116 ± 2) times 10-4 cm-1 and A⊥ = ∓(14 ± 4) times 10-4 cm-1. We proposed that the low temperature phase (below 247 K) of each of these systems provides an example of a Jahn-Teller glass.
Resumo:
The electron paramagnetic resonance (EPR) of ternary oxides of Cu(II) has been studied between 4.2 and 300 K. The systems include those with 180 degrees Cu-O-Cu interactions (such as Ln2CuO4, Sr2CuO2Cl2, Sr2CuO3 and Ca2CuO3) or 90 degrees Cu-O-Cu interactions (such as Y2Cu2O5 or BaCuO2) as well as those in which the Cu2+ ions are isolated (such as Y2BaCuO5, La1.8Ba1.2Cu0.9O4.8 and Bi2CuO4). The change in the EPR susceptibility as a function of temperature is compared with that of the DC magnetic susceptibility. Compounds with extended 180 degrees Cu-O-Cu interactions which have a low susceptibility also do not give EPR signals below room temperature. For compounds such as Ca2CuO3 with one-dimensional 180 degrees Cu-O-Cu interactions a weak EPR signal is found the temperature dependence of which is very different from that of the DC susceptibility. For Y2BaCuO5 as well as for La1.8Ba1.2Cu0.9O4.8 the EPR susceptibility as well as its temperature variation are comparable with those of the static susceptibility near room temperature but very different at low temperatures. Bi2CuO4 also shows a similar behaviour. In contrast, for Y2Cu2O5, in which the copper ions have a very distorted nonsquare-planar configuration, the EPR and the static susceptibility show very similar temperature dependences. In general, compounds in which the copper ions have a square-planar geometry give no EPR signal in the ground state (0 K) while those with a distortion from square-planar geometry do give a signal. The results are analysed in the light of recent MS Xalpha calculations on CuO46- square-planar clusters with various Cu-O distances as well as distortions. It is suggested that in square-planar geometry the ground state has an unpaired electron in anionic orbitals which is EPR inactive. Competing interactions from other cations, an increase in Cu-O distance or distortions from square-planar geometry stabilise another state which has considerably more Cu 3d character. These states are EPR active. Both these states, however, are magnetic. For isolated CuO46- clusters the magnetic interactions seem to involve only the states which have mainly anionic character.
Resumo:
We report on the X-band (similar to 9.43 GHz) electron paramagnetic resonance (EPR) investigations carried out on polycrystalline Ga1-xMnxSb (x=0.02). A strong EPR signal with an effective g factor (g(eff)) close to 2.00 was observed, suggesting that the ionic state of Mn which replaces Ga ion in the lattice, is Mn2+ attributable to Delta M=1 transition of the ionized Mn acceptor A(-), Mn (3d(5)). The apparent absence of EPR signal, typical for neutral Mn acceptor at g=2.7 suggests either no such centers are present or the signal broadens beyond detection limit. The temperature dependent EPR studies combined with dc magnetization data suggest the possible coexistence of antiferromagnetic and ferromagnetic phases at very low temperatures. (C) 2011 American Institute of Physics. doi:10.1063/1.3543983]
Resumo:
Studies have been carried out in glasses containing Fe2O3, V2O5, and Fe2O3 + V2O5. Mossbauer studies in the ZnO-B2O3-Fe2O3 system show that iron is present as Fe3+ with tetrahedral coordination and that the isomer shift and the quadrupole splitting decrease with increase of Fe2O3 Content; similarly, the isomer shift and quadrupole splitting are also found to decrease with increasing ZnO. On the other hand, in the Na2O-ZnO-B2O3-Fe2O3 system, the isomer shift increases with Na2O or ZnO while the quadrupole splitting is fairly insensitive. Electron paramagnetic resonance in the ZnO-B2O3-Fe2O3 system shows signals at g = 4.20 and 2.0, whose intensity and linewidth show strong dependence on Fe2O3 content. In the ZnO-B2O3-V2O5 system, electron paramagnetic resonance shows that vanadium is present as the vanadyl complex, and the hyperfine coupling constants, A(parallel-to) and A(perpendicular-to) decrease with increasing V2O5 content; on the other hand, g(parallel-to) decreases and g(perpendicular-to) increases slightly, indicating an increase in tetragonal distortion. Zinc borate glasses containing Fe2O3 + V2O5 do not show the hyperfine structure of V4+ due to the interaction between Fe3+ and V4+
Resumo:
Electron paramagnetic resonance studies under ambient conditions of boron‐doped porous silicon show anisotropic Zeeman (g) and hyperfine (A) tensors, signaling localization of the charge carriers due to quantum confinement.
Resumo:
We report the results of magnetization and electron paramagnetic resonance (EPR) studies on nanoparticles (average diameter similar to 30 nm) of Bi0.25Ca0.75MnO3 (BCMO) and compare them with the results on bulk BCMO. The nanoparticles were prepared using the nonaqueous sol-gel technique and characterized by XRD and TEM analysis. Magnetization measurements were carried out with a commercial physical property measurement system (PPMS). While the bulk BCMO exhibits a charge ordering transition at similar to 230 K and an antiferromagnetic (AFM) transition at similar to 130 K, in the nanoparticles, the CO phase is seen to have disappeared and a transition to a ferromagnetic (FM) state is observed at T-c similar to 120 K. However, interestingly, the exchange bias effect observed in other nanomanganite ferromagnets is absent in BCMO nanoparticles. EPR measurements were carried out in the X-band between 8 and 300 K. Lineshape fitting to a Lorentzian with two terms (accounting for both the clockwise and anticlockwise rotations of the microwave field) was employed to obtain the relevant EPR parameters as functions of temperature. The results confirm the occurrence of ferromagnetism in the nanoparticles of BCMO. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4730612]
Resumo:
CoFe2O4 nanoparticles were prepared by solution combustion method. The nanoparticle are characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy and scanning electron microscopy (SEM). PXRD reveals single phase, cubic spinel structure with Fd (3) over barm (227) space group. SEM micrograph shows the particles are agglomerated and porous in nature. Electron paramagnetic resonance spectrum exhibits a broad resonance signal g=2.150 and is attributed to super exchange between Fe3+ and Co2+. Magnetization values of CoFe2O4 nanoparticle are lower when compared to the literature values of bulk samples. This can be attributed to the surface spin canting due to large surface-to-volume ratio for a nanoscale system. The variation of dielectric constant, dielectric loss, loss tangent and AC conductivity of as-synthesized nano CoFe2O4 particles at room temperature as a function of frequency has been studied. The magnetic and dielectric properties of the samples show that they are suitable for electronic and biomedical applications.
Resumo:
The mixed alkali metal effect is a long-standing problem in glasses. Electron paramagnetic resonance (EPR) is used by several researchers to study the mixed alkali metal effect, but a detailed analysis of the nearest neighbor environment of the glass former using spin-Hamiltonian parameters was elusive. In this study we have prepared a series of vanadate glasses having general formula (mol %) 40 V2O5-30BaF(2)-(30 - x)LiF-xRbF with x = 5, 10, 15, 20, 25, and 30. Spin-Hamiltonian parameters of V4+ ions were extracted by simulating and fitting to the experimental spectra using EasySpin. From the analysis of these parameters it is observed that the replacement of lithium ions by rubidium ions follows a ``preferential substitution model''. Using this proposed model, we were able to account for the observed variation in the ratio of the g parameter, which goes through a maximum. This reflects an asymmetric to symmetric changeover of. the alkali metal ion environment around the vanadium site. Further, this model also accounts for the variation in oxidation state of vanadium ion, which was confirmed from the variation in signal intensity of EPR spectra.
Resumo:
Ferrimagnetism and metamagnetic features tunable by composition are observed in the magnetic response of Nd1-xYxMnO3, for x=0.1-0.5. For all values of x in the series, the compound crystallizes in orthorhombic Pbnm space group similar to NdMnO3. Magnetization studies reveal a phase transition of the Mn-sublattice below T-N(Mn) approximate to 80 K for all compositions, which, decreases up on diluting the Nd-site with Yttrium. For x=0.35, ferrimagnetism is observed. At 5 K, metamagnetic transition is observed for all compositions x < 0.4. The evolution of magnetic ground states and appearance of ferrimagnetism in Nd1-xYxMnO3 can be accounted for by invoking the scenario of magnetic phase separation. The high frequency electron paramagnetic resonance measurements on x=0.4 sample, which is close to the critical composition for phase separation, revealed complex temperature dependent lineshapes clearly supporting the assumption of magnetic phase separation. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
We study and compare magnetic and electron paramagnetic resonance behaviors of bulk and nanoparticles of Nd1-xCaxMnO3 in hole doped (x = 0.4; NCMOH) and electron doped (x = 0.6; NCMOE) samples. NCMOH in bulk form shows a complex temperature dependence of magnetization M(T), with a charge ordering transition at similar to 250 K, an antiferromagnetic (AFM) transition at similar to 150 K, and a transition to a canted AFM phase/mixed phase at similar to 80 K. Bulk NCMOE behaves quite differently with just a charge ordering transition at similar to 280 K, thus providing a striking example of the so called electron-hole asymmetry. While our magnetization data on bulk samples are consistent with the earlier reports, the new results on the nanoparticles bring out drastic effects of size reduction. They show that M(T) behaviors of the two nanosamples are essentially similar in addition to the absence of the charge order in them thus providing strong evidence for vanishing of the electron-hole asymmetry in nanomanganites. This conclusion is further corroborated by electron paramagnetic resonance studies which show that the large difference in the ``g'' values and their temperature dependences found for the two bulk samples disappears as they approach a common behavior in the corresponding nanosamples. (C) 2015 AIP Publishing LLC.