68 resultados para Omega Dental Ceramic
em Indian Institute of Science - Bangalore - Índia
Resumo:
We demonstrate ordered array formation of Au nanoparticles by controlled solid-state dewetting of a metal film on stepped alumina substrates. In situ transmission electron microscopy studies reveal that the dewetting process starts with nucleation of ordered dry regions on the substrate. The chemical potential difference between concave and convex surface regions induces anisotropic metal diffusion leading to the formation of nanowires in the valleys. The nanowires fragment due to Rayleigh instability forming arrays of metal nanoparticles on the substrate. The length scale of reconstruction relative to the starting film thickness is an important parameter in controlling the spatial order of the nanoparticles.
Resumo:
Rat lung microsomes were shown to �-hydroxylate acyclic monoterpene alcohols in the presence of NADPH and O2. NADH could neither support hydroxylation efficiently nor did it show synergistic effect. The hydroxylase activity was greater in microsomes prepared from β-naphthoflavone (BNF)-treated rats than from phenobarbital (PB)-treated or control microsomal preparations. Hydroxylation was specific to the C-8 position in geraniol and has a pH optimum of 7.8. The inhibition of the hydroxylase activity by SKF-525A, CO, N-ethylmaleimide, ellipticine, α-naphthoflavone, cyt. Image and p-CMB indicated the involvement of the cyt. P-450 system. However, NaN3 stimulated the hydroxylase activity to a significant level. Rat kidney microsomes were also capable of �-hydroxylating geraniol although the activity was lower than that observed with lungs.
Resumo:
The spherical indentation strength of a lead zirconate titanate (PZT) piezoelectric ceramic was investigated under poled and unpoled conditions and with different electrical boundary conditions (arising through the use of insulating or conducting indenters). Experimental results show that the indentation strength of the poled PZT is higher than that of the unpoled PZT. The strength of a poled PZT under a conducting indenter is higher than that under an insulating indenter. Poling direction (with respect to the direction of indentation loading) did not significantly affect the strength of material. Complementary finite element analysis (FEA) of spherical indentation of an elastic, linearly coupled piezoelectric half-space is conducted for rationalizing the experimental observations. Simulations show marked dependency of the contact stress on the boundary conditions. In particular, contact stress redistribution in the Coupled problem leads to a change in the fracture initiation, from Hertzian cracking in the unpoled material to Subsurface damage initiation in poled PZT. These observations help explain the experimental ranking of strength the PZT in different material conditions or under different boundary conditions.
Resumo:
Magnetic measurements have been used in combination with transmission electron microscopy to investigate small nickel metal particles in metal-ceramic composites. Estimates of the average number of atoms in the particles are given for nonmagnetic samples with low Ni content.
Resumo:
Rat lung microsomes were shown to ω-hydroxylate acyclic monoterpene alcohols in the presence of NADPH and O2. NADH could neither support hydroxylation efficiently nor did it show synergistic effect. The hydroxylase activity was greater in microsomes prepared from β-naphthoflavone (BNF)-treated rats than from phenobarbital (PB)-treated or control microsomal preparations. Hydroxylation was specific to the C-8 position in geraniol and has a pH optimum of 7.8. The inhibition of the hydroxylase activity by SKF-525A, CO, N-ethylmaleimide, ellipticine, α-naphthoflavone, cyt. Image and p-CMB indicated the involvement of the cyt. P-450 system. However, NaN3 stimulated the hydroxylase activity to a significant level. Rat kidney microsomes were also capable of ω-hydroxylating geraniol although the activity was lower than that observed with lungs.
Resumo:
Donor doped BaTiO3 ceramics become insulating5 under controlled conditions with effective dielectric constants >10. The changes in EPR signals indicate that a certain fraction of the donor doped BaTiO3 is cubic even at room temperature and that the cubic fraction increases with the donor content. X-ray powder diffraction data support the EPR results. The coexistence of both the phases over a range of temperature is characteristic of diffused phase transition. The effect of grain size variation on EPR signal intensities indicate that the boundary layers surrounding the grains may constitute the cubic phase as a result of higher Ba-vacancies and donor contents at the grain boundary layer than in the bulk. Since the acceptor states arising from the Ba-vacancies and the impurities are activated in the cubic phase, they capture electrons from the conduction band, rendering the cubic phase electrically more insulating than the semiconductive tetragonal grain interiors. Thus, the cubic grain boundary layers act as effective dielectric media where the field tends to concentrate.
Resumo:
The omega amino acids have a larger degree of conformational variability than the alpha amino acids, leading to a greater diversity of backbone structures in peptides and polypeptides. The synthetic accessibility of chiral beta-amino acids and the recent observation of novel helical folds in oligomers of cyclic beta-amino acids has led to renewed interest in the stereochemistry of omega-amino acid containing peptides. This review focuses on the conformational characteristics of the polymethylene chain in omega-amino acid segments and surveys structural features in peptides established by X-ray diffraction. The literature on polymers of achiral omega-amino acids (nylon derivatives) and chiral, substituted derivatives derived from trifunctional alpha-amino acids, reveals that while sheet-like, intermolecular hydrogen bonded structures are formed by the former, folded helices appear favoured by the latter. omega-Amino acids promise to expand the repertoire of peptide folds.
Resumo:
In this work, for the first time, we present a physically based analytical threshold voltage model for omega gate silicon nanowire transistor. This model is developed for long channel cylindrical body structure. The potential distribution at each and every point of the of the wire is derived with a closed form solution of two dimensional Poisson's equation, which is then used to model the threshold voltage. Proposed model can be treated as a generalized model, which is valid for both surround gate and semi-surround gate cylindrical transistors. The accuracy of proposed model is verified for different device geometry against the results obtained from three dimensional numerical device simulators and close agreement is observed.
Resumo:
The effects of inserting unsubstituted omega-amino acids into the strand segments of model beta-hairpin peptides was investigated by using four synthetic decapeptides, Boc-Lcu-Val-Xxx-Val-D-Pro-Gly-Leu-Xxx-Val-Val- OMe: pepticle 1 (Xxx=Gly), pepticle 2 (Xxx=beta Gly=beta hGly=homoglycine, beta-glycine), pepticle 3 (Xxx=gamma Abu=gamma-aminobutyric acid), pepticle 4 (Xxx= delta Ava=delta-aminovaleric acid). H-1 NMR studies (500 MHz, methanol) reveal several critical cross-strand NOEs, providing evidence for P-hairpin conformations in peptides 2-4. In peptide 3, the NMR results support the formation of the nucleating turn, however, evidence for cross-strand registry is not detected. Single-crystal X-ray diffraction studies of peptide 3 reveal a beta-hairpin conformation for both molecules in the crystallographic asymmetric unit, stabilized by four cross-strand hydrogen bonds, with the gamma Abu residues accommodated within the strands. The D-Pro-Gly segment in both molecules (A,B) adopts a type II' beta-turn conformation. The circular dichroism spectrum for peptide 3 is characterized by a negative CD band at 229 rim, whereas for peptides 2 and 4, the negative band is centered at 225 nm, suggesting a correlation between the orientation of the amide units in the strand segments and the observed CD pattern.
Resumo:
Starting with non-stoichiometric Zr-B4C powder mixture ZrB2-ZrC matrix composites with SiC particulate addition have been made. It was found that variable amounts (5-25 vol%) of SiC could be incorporated and reactively hot pressed (RHPed) to relative densities of 97-99% at 1400-1500 degrees C. This technique has the potential to fabricate ZrB2-based matrices at low temperatures with a variety of reinforcements whose composition and volume fraction are not limited by stoichiometric considerations. The hardness of the composites is in the range of 17-22 GPa. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Escherichia coli RNA polymerase is a multi-subunit enzyme containing alpha(2)beta beta'omega sigma, which transcribes DNA template to intermediate RNA product in a sequence specific manner. Although most of the subunits are essential for its function, the smallest subunit omega (average molecular mass similar to 10,105 Da) can be deleted without affecting bacterial growth. Creating a mutant of the omega subunit can aid in improving the understanding of its role. Sequencing of rpoZ gene that codes for omega subunit from a mutant variant suggested a substitution mutation at position 60 of the protein: asparagine (N) -> aspartic acid (D). This mutation was verified at the protein level by following a typical mass spectrometry (MS) based bottom-up proteomic approach. Characterization of in-gel trypsin digested samples by reverse phase liquid chromatography (LC) coupled to electrospray ionization (ESI)-tandem mass spectrometry (MS/MS) enabled in ascertaining this mutation. Electron transfer dissociation (ETD) of triply charged (M + 3H)(3+)] tryptic peptides (residues 53-67]), EIEEGLINNQILDVR from wild-type and EIEEGLIDNQILDVR from mutant, facilitated in unambiguously determining the site of mutation at residue 60.
Resumo:
This review briefly surveys the conformational properties of guest omega-amino acid residues when incorporated into host alpha-peptide sequences. The results presented focus primarily on the use of beta- and gamma-residues in alphaomega sequences. The insertion of additional methylene groups into peptide backbones enhances the range of accessible conformations, introducing additional torsional variables. A nomenclature system, which permits ready comparisons between alpha-peptides and hybrid sequences, is defined. Crystal structure determination of hybrid peptides, which adopt helical and beta-hairpin conformations permits the characterization of backbone conformational parameters for beta- and gamma-residues inserted into regular alpha-polypeptide structures. Substituted beta- and gamma-residues are more limited in the range of accessible conformation than their unsubstituted counterparts. The achiral beta,beta-disubstituted gamma-amino acid, gabapentin, is an example of a stereochemically constrained residue in which the torsion angles about the C-beta-C-gamma (theta(1)) and C-alpha-C-beta (theta(2)) bonds are restricted to the gauche conformation. Hybrid sequences permit the design of novel hydrogen bonded rings in peptide structures.
Resumo:
This paper presents a laboratory study of the discharge radio noise generated by ceramic insulator strings under normal conditions. In the course of study, a comparison on the performance of two types of insulator strings under two different conditions was studied namely (a) normal disc insulators in a string and (b) disc insulators integrated with a newly developed field reduction electrode fixed to the disc insulator at the pin junction. The results obtained during the study are discussed and presented.
Resumo:
The dielectric, pyroelectric and thermal properties of ferroelectric Bi2VO5.5(Bi4V2O11) ceramic have been studied over a temperature range of 300-780 K. The sign of the pyroelectric coefficient is positive at room temperature. The dielectric constant, pyroelectric coefficient and specific heat exhibit anomalies around the Curie temperature, 725 K. The frequency response of the dielectric constant and tan delta has been studied over a frequency range of 1-100 kHz. It is found that both the dielectric constant and the loss tangent decrease with increasing frequency. The pyroelectric figures of merit from the point of view of different applications have been calculated at 320 K by combining pyroelectric, dielectric and thermal properties.
Resumo:
If the solar dynamo operates in a thin layer of 10,000-km thickness at the interface between the convection zone and the radiative core, using the facts that the dynamo should have a period of 22 years and a half-wavelength of 40 deg in the theta-direction, it is possible to impose restrictions on the values which various dynamo parameters are allowed to have. It is pointed out that the dynamo should be of alpha-sq omega nature, and kinematical calculations are presented for free dynamo waves and for dynamos in thin rectangular slabs with appropriate boundary conditions. An alpha-sq omega dynamo is expected to produce a significant poloidal field which does not leak to the solar surface. It is found that the turbulent diffusity eta and alpha-coefficient are restricted to values within about a factor of 10, the median values being eta of about 10 to the 10th sq cm/sec and alpha of about 10 cm/sec. On the basis of mixing length theory, it is pointed out that such values imply a reasonable turbulent velocity of the order 30 m/s, but rather small turbulent length scales like 300 km.