127 resultados para Non-autonomous system
em Indian Institute of Science - Bangalore - Índia
Resumo:
We consider some non-autonomous second order Cauchy problems of the form u + B(t)(u) over dot + A(t)u = f (t is an element of [0, T]), u(0) = (u) over dot(0) = 0. We assume that the first order problem (u) over dot + B(t)u = f (t is an element of [0, T]), u(0) = 0, has L-p-maximal regularity. Then we establish L-p-maximal regularity of the second order problem in situations when the domains of B(t(1)) and A(t(2)) always coincide, or when A(t) = kappa B(t).
Resumo:
In this paper the method of ultraspherical polynomial approximation is applied to study the steady-state response in forced oscillations of a third-order non-linear system. The non-linear function is expanded in ultraspherical polynomials and the expansion is restricted to the linear term. The equation for the response curve is obtained by using the linearized equation and the results are presented graphically. The agreement between the approximate solution and the analog computer solution is satisfactory. The problem of stability is not dealt with in this paper.
Resumo:
In this paper, a new approach to the study of non-linear, non-autonomous systems is presented. The method outlined is based on the idea of solving the governing differential equations of order n by a process of successive reduction of their order. This is achieved by the use of “differential transformation functions”. The value of the technique presented in the study of problems arising in the field of non-linear mechanics and the like, is illustrated by means of suitable examples drawn from different fields such as vibrations, rigid body dynamics, etc.
Resumo:
The natural modes of a non-linear system with two degrees of freedom are investigated. The system, which may contain either hard or soft springs, is shown to possess three modes of vibration one of which does not have any counterpart in the linear theory. The stability analysis indicates the existence of seven different modal stability patterns depending on the values of two parameters of non-linearity.
Resumo:
In the trishanku (triA(-)) mutant of the social amoeba Dictyostelium discoideum, aggregates are smaller than usual and the spore mass is located mid-way up the stalk, not at the apex. We have monitored aggregate territory size, spore allocation and fruiting body morphology in chimaeric groups of (quasi-wild-type) Ax2 and triA(-) cells. Developmental canalisation breaks down in chimaeras and leads to an increase in phenotypic variation. A minority of triA(-) cells causes largely Ax2 aggregation streams to break up; the effect is not due to the counting factor. Most chimaeric fruiting bodies resemble those of Ax2 or triA(-). Others are double-deckers with a single stalk and two spore masses, one each at the terminus and midway along the stalk. The relative number of spores belonging to the two genotypes depends both on the mixing ratio and on the fruiting body morphology. In double-deckers formed from 1:1 chimaeras, the upper spore mass has more Ax2 spores, and the lower spore mass more triA(-) spores, than expected. Thus, the traits under study depend partly on the cells' own genotype and partly on the phenotypes, and so genotypes, of other cells: they are both autonomous and non-autonomous. These findings strengthen the parallels between multicellular development and behaviour in social groups. Besides that, they reinforce the point that a trait can be associated with a genotype only in a specified context.
Resumo:
In the present article we take up the study of nonlinear localization induced base isolation of a 3 degree of freedom system having cubic nonlinearities under sinusoidal base excitation. The damping forces in the system are described by functions of fractional derivative of the instantaneous displacements, typically linear and quadratic damping are considered here separately. Under the assumption of smallness of certain system parameters and nonlinear terms an approximate estimate of the response at each degree of freedom of the system is obtained by the Method of Multiple Scales approach. We then consider a similar system where the nonlinear terms and certain other parameters are no longer small. Direct numerical simulation is made use of to obtain the amplitude plot in the frequency domain for this case, which helps us to establish the efficacy of this method of base isolation for a broad class of systems. Base isolation obtained this way has no counterpart in the linear theory.
Resumo:
In this paper, the study of a third-order mechanical oscillator is presented by demonstrating its equivalence to the well-known R.C. multivibrator with two additional reactive elements. The conditions for the oscillator's possession of periodic solutions are presented. It is also shown that under certain conditions, the study of the given third-order autonomous system can be reduced to the study of an equivalent second-order, non-autonomous system.
Resumo:
This paper is concerned with the analysis of the absolute stability of a non-linear autonomous system which consists of a single non-linearity belonging to a particular class, in an otherwise linear feedback loop. It is motivated from the earlier Popovlike frequency-domain criteria using the ' multiplier ' eoncept and involves the construction of ' stability multipliers' with prescribed phase characteristics. A few computer-based methods by which this problem can be solved are indicated and it is shown that this constitutes a stop-by-step procedure for testing the stability properties of a given system.
Resumo:
It is shown that a sufficient condition for the asymptotic stability-in-the-large of an autonomous system containing a linear part with transfer function G(jω) and a non-linearity belonging to a class of power-law non-linearities with slope restriction [0, K] in cascade in a negative feedback loop is ReZ(jω)[G(jω) + 1 K] ≥ 0 for all ω where the multiplier is given by, Z(jω) = 1 + αjω + Y(jω) - Y(-jω) with a real, y(t) = 0 for t < 0 and ∫ 0 ∞ |y(t)|dt < 1 2c2, c2 being a constant associated with the class of non-linearity. Any allowable multiplier can be converted to the above form and this form leads to lesser restrictions on the parameters in many cases. Criteria for the case of odd monotonic non-linearities and of linear gains are obtained as limiting cases of the criterion developed. A striking feature of the present result is that in the linear case it reduces to the necessary and sufficient conditions corresponding to the Nyquist criterion. An inequality of the type |R(T) - R(- T)| ≤ 2c2R(0) where R(T) is the input-output cross-correlation function of the non-linearity, is used in deriving the results.
Resumo:
In this article, a non-autonomous (time-varying) semilinear system is considered and its approximate controllability is investigated. The notion of 'bounded integral contractor', introduced by Altman, has been exploited to obtain sufficient conditions for approximate controllability. This condition is weaker than Lipschitz condition. The main theorems of Naito [11, 12] are obtained as corollaries of our main results. An example is also given to show how our results weaken the conditions assumed by Sukavanam[17].
Resumo:
Interfacial area measurement has been carried out experimentally by measuring the bubble size and holdup for air-sodium chloride solution system. The size of the bubble is predominantly established by the air hold up. High speed photography technique for bubble size measurement and gamma ray attenuation method for holdup measurements are followed. The measured values are compared with the theoretically predicted values. Interracial area as a function of the liquid flow rate and also its distance from the nozzle of the ejector has been reported in this paper. The results obtained for this non-reactive system are also compared with those of air-water system.
Resumo:
This paper considers the on-line identification of a non-linear system in terms of a Hammerstein model, with a zero-memory non-linear gain followed by a linear system. The linear part is represented by a Laguerre expansion of its impulse response and the non-linear part by a polynomial. The identification procedure involves determination of the coefficients of the Laguerre expansion of correlation functions and an iterative adjustment of the parameters of the non-linear gain by gradient methods. The method is applicable to situations involving a wide class of input signals. Even in the presence of additive correlated noise, satisfactory performance is achieved with the variance of the error converging to a value close to the variance of the noise. Digital computer simulation establishes the practicability of the scheme in different situations.
Resumo:
In this paper, the transient response of a third-order non-linear system is obtained by first reducing the given third-order equation to three first-order equations by applying the method of variation of parameters. On the assumption that the variations of amplitude and phase are small, the functions are expanded in ultraspherical polynomials. The expansion is restricted to the constant term. The resulting equations are solved to obtain the response of the given third-order system. A numerical example is considered to illustrate the method. The results show that the agreement between the approximate and digital solution is good thus vindicating the approximation.
Resumo:
The scope of the differential transformation technique, developed earlier for the study of non-linear, time invariant systems, has been extended to the domain of time-varying systems by modifications to the differential transformation laws proposed therein. Equivalence of a class of second-order, non-linear, non-autonomous systems with a linear autonomous model of second order is established through these transformation laws. The feasibility of application of this technique in obtaining the response of such non-linear time-varying systems is discussed.