12 resultados para New technologies and media
em Indian Institute of Science - Bangalore - Índia
Resumo:
The theme of the session is the New Concept and Applications both for the grouting and deep mixing technologies. Nineteen papers were submitted to this session, and those covered a variety of topics; 1) New concepts and development, 2) Refinement of techniques, and 3) analysis and applications. Eight papers out of them were presented orally.
Resumo:
The Indian National Science Academy (INSA), New Delhi which is currently in its Platinum Jubilee year, has maintained its eminence and dignity all these years. The Fellowship of INSA is highly cherished. The Academy enjoys considerable prestige. This prestige needs to be converted into influence. INSA is in the process of setting up a Science Policy Study Cell. The Academy needs to strengthen its role as a think-tank in the service of the nation on science-related issues. INSA is also in the process of establishing an archive. We can understand the present and plan for the future only in the context of the past. Thirdly, we would like to establish an electronic hub of science information at INSA. We do not wish to solely hold large quantities of information. But we need to have links with all major depositories of science- related information in the country. This is in consonance with the general philosophy of an Academy. The Academy is not a major implementer or executor of policies and programmes. It is a catalyst and a beacon that guides.
Resumo:
The paper presents two new algorithms for the direct parallel solution of systems of linear equations. The algorithms employ a novel recursive doubling technique to obtain solutions to an nth-order system in n steps with no more than 2n(n −1) processors. Comparing their performance with the Gaussian elimination algorithm (GE), we show that they are almost 100% faster than the latter. This speedup is achieved by dispensing with all the computation involved in the back-substitution phase of GE. It is also shown that the new algorithms exhibit error characteristics which are superior to GE. An n(n + 1) systolic array structure is proposed for the implementation of the new algorithms. We show that complete solutions can be obtained, through these single-phase solution methods, in 5n−log2n−4 computational steps, without the need for intermediate I/O operations.
Resumo:
We utilize top polarization in the process e(+)e(-) -> t (t) over bar at the International Linear Collider ( ILC) with transverse beam polarization to probe interactions of the scalar and tensor type beyond the standard model and to disentangle their individual contributions. Ninety percent confidence level limits on the interactions with realistic integrated luminosity are presented and are found to improve by an order of magnitude compared to the case when the spin of the top quark is not measured. Sensitivities of the order of a few times 10(-3) TeV-2 for real and imaginary parts of both scalar and tensor couplings at root s = 500 and 800 GeV with an integrated luminosity of 500 fb(-1) and completely polarized beams are shown to be possible. A powerful model-independent framework for inclusive measurements is employed to describe the spin-momentum correlations, and their C, P, and T properties are presented in a technical appendix.
Resumo:
Two new vanadium-tungsten oxide hydrates of the formulas, H0.125V0.125W0.875O3.1.5H2O (I) and Ho.33V0.33W0.67O3.1/3H2O (II), have been synthesized by acid-leaching of LiVWO6 with aqueous HNO3/HCl. While phase I obtained by treatment of LiVWO6 with dilute HNO3/HCl possesses an orthorhombic structure (a = 7.77(3), b = 13.87(6), c = 7.44(3) angstrom) related to WO3.2H2O, phase II, prepared by refluxing LiVWO6 with concentrated HNO3, is isostructural with WO3.1/3H2O. Dehydration of II around 330-degrees-C yields a hexagonal phase (III, a = 7.25(4), c = 7.74(3) angstrom) isotypic with hexagonal WO3. Both land III exhibit redox and acid-base intercalation reactivity characteristic of layered and tunnel structures.
Resumo:
This paper presents a novel hypothesis on the function of massive feedback pathways in mammalian visual systems. We propose that the cortical feature detectors compete not for the right to represent the output at a point, but for exclusive rights to abstract and represent part of the underlying input. Feedback can do this very naturally. A computational model that implements the above idea for the problem of line detection is presented and based on that we suggest a functional role for the thalamo-cortical loop during perception of lines. We show that the model successfully tackles the so called Cross problem. Based on some recent experimental results, we discuss the biological plausibility of our model. We also comment on the relevance of our hypothesis (on the role of feedback) to general sensory information processing and recognition. (C) 1998 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
The top polarization at the International Linear Collider (ILC) with transverse beam polarization is utilized in the process to probe interactions of the scalar and tensor type beyond the Standard Model and to disentangle their individual contributions. Confidence level limits of 90% are presented on the interactions with realistic integrated luminosity and are found to improve by an order of magnitude compared to the case when the spin of the top quark is not measured. Sensitivities of the order of a few times 10 (-aEuro parts per thousand 3) TeV (-aEuro parts per thousand 2) for real and imaginary parts of both scalar and tensor couplings at and 800 GeV with an integrated luminosity of 500 fb (-aEuro parts per thousand 1) and completely polarized beams are shown to be possible.
Resumo:
Facile synthesis of triad 3 and tetrad 4 incorporating -B(Mes)(2) (Mes = mesityl (2,4,6-trimethylphenyl)), boron dipyrromethene (BODIPY), and triphenylamine is reported. Introduction of two dissimilar acceptors (triarylborane and BODIPY) on a single donor resulted in two distinct intramolecular charge transfer processes (amine-to-borane and amine-to-BODIPY). The absorption and emission properties of the new triad and tetrad are highly dependent on individual building units. The nature of electronic communication among the individual fluorophore units has been comprehensively investigated and compared with building units. Compounds 3 and 4 showed chromogenic and fluorogenic responses for small anions such as fluoride and cyanide.
Resumo:
A new bufonid amphibian, belonging to a new monotypic genus, is described from the Andaman Islands, in the Bay of Bengal, Republic of India, based on unique external morphological and skeletal characters which are compared with those of known Oriental and other relevant bufonid genera. Blythophryne gen. n. is distinguished from other bufonid genera by its small adult size (mean SVL 24.02 mm), the presence of six presacral vertebrae, an absence of coccygeal expansions, presence of an elongated pair of parotoid glands, expanded discs at digit tips and phytotelmonous tadpoles that lack oral denticles. The taxonomic and phylogenetic position of the new taxon (that we named as Blythophryne beryet gen. et sp. n.) was ascertained by comparing its 12S and 16S partial genes with those of Oriental and other relevant bufonid lineages. Resulting molecular phylogeny supports the erection of a novel monotypic genus for this lineage from the Andaman Islands of India.