101 resultados para Network measurement
em Indian Institute of Science - Bangalore - Índia
Resumo:
We present a technique for an all-digital on-chip delay measurement system to measure the skews in a clock distribution network. It uses the principle of sub-sampling. Measurements from a prototype fabricated in a 65 nm industrial process, indicate the ability to measure delays with a resolution of 0.5ps and a DNL of 1.2 ps.
Resumo:
We study the problem of optimal sequential (''as-you-go'') deployment of wireless relay nodes, as a person walks along a line of random length (with a known distribution). The objective is to create an impromptu multihop wireless network for connecting a packet source to be placed at the end of the line with a sink node located at the starting point, to operate in the light traffic regime. In walking from the sink towards the source, at every step, measurements yield the transmit powers required to establish links to one or more previously placed nodes. Based on these measurements, at every step, a decision is made to place a relay node, the overall system objective being to minimize a linear combination of the expected sum power (or the expected maximum power) required to deliver a packet from the source to the sink node and the expected number of relay nodes deployed. For each of these two objectives, two different relay selection strategies are considered: (i) each relay communicates with the sink via its immediate previous relay, (ii) the communication path can skip some of the deployed relays. With appropriate modeling assumptions, we formulate each of these problems as a Markov decision process (MDP). We provide the optimal policy structures for all these cases, and provide illustrations of the policies and their performance, via numerical results, for some typical parameters.
Resumo:
An estimate of the groundwater budget at the catchment scale is extremely important for the sustainable management of available water resources. Water resources are generally subjected to over-exploitation for agricultural and domestic purposes in agrarian economies like India. The double water-table fluctuation method is a reliable method for calculating the water budget in semi-arid crystalline rock areas. Extensive measurements of water levels from a dense network before and after the monsoon rainfall were made in a 53 km(2)atershed in southern India and various components of the water balance were then calculated. Later, water level data underwent geostatistical analyses to determine the priority and/or redundancy of each measurement point using a cross-validation method. An optimal network evolved from these analyses. The network was then used in re-calculation of the water-balance components. It was established that such an optimized network provides far fewer measurement points without considerably changing the conclusions regarding groundwater budget. This exercise is helpful in reducing the time and expenditure involved in exhaustive piezometric surveys and also in determining the water budget for large watersheds (watersheds greater than 50 km(2)).
Resumo:
Increased emphasis on rotorcraft performance and perational capabilities has resulted in accurate computation of aerodynamic stability and control parameters. System identification is one such tool in which the model structure and parameters such as aerodynamic stability and control derivatives are derived. In the present work, the rotorcraft aerodynamic parameters are computed using radial basis function neural networks (RBFN) in the presence of both state and measurement noise. The effect of presence of outliers in the data is also considered. RBFN is found to give superior results compared to finite difference derivatives for noisy data. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
In this paper, we present a growing and pruning radial basis function based no-reference (NR) image quality model for JPEG-coded images. The quality of the images are estimated without referring to their original images. The features for predicting the perceived image quality are extracted by considering key human visual sensitivity factors such as edge amplitude, edge length, background activity and background luminance. Image quality estimation involves computation of functional relationship between HVS features and subjective test scores. Here, the problem of quality estimation is transformed to a function approximation problem and solved using GAP-RBF network. GAP-RBF network uses sequential learning algorithm to approximate the functional relationship. The computational complexity and memory requirement are less in GAP-RBF algorithm compared to other batch learning algorithms. Also, the GAP-RBF algorithm finds a compact image quality model and does not require retraining when the new image samples are presented. Experimental results prove that the GAP-RBF image quality model does emulate the mean opinion score (MOS). The subjective test results of the proposed metric are compared with JPEG no-reference image quality index as well as full-reference structural similarity image quality index and it is observed to outperform both.
Resumo:
A simple method is described to combine a modern function generator and a digital oscilloscope to configure a setup that can directly measure the amplitude frequency response of a system. This is achieved by synchronously triggering both instruments, with the function generator operated in the ``Linear-Sweep'' frequency mode, while the oscilloscope is operated in the ``Envelope'' acquisition mode. Under these conditions, the acquired envelopes directly correspond to the (input and output signal) spectra, whose ratio yields the amplitude frequency response. The method is easy to configure, automatic, time-efficient, and does not require any external control or interface or programming. This method is ideally suited to impart hands-on experience in sweep frequency response measurements, demonstrate resonance phenomenon in transformer windings, explain the working principle of an impedance analyzer, practically exhibit properties of network functions, and so on. The proposed method is an inexpensive alternative to existing commercial equipment meant for this job and is also an effective teaching aid. Details of its implementation, along with some practical measurements on an actual transformer, are presented.
Resumo:
We consider the problem of tracking an intruder in a plane region by using a wireless sensor network comprising motes equipped with passive infrared (PIR) sensors deployed over the region. An input-output model for the PIR sensor and a method to estimate the angular speed of the target from the sensor output are proposed. With the measurement model so obtained, we study the centralized and decentralized tracking performance using the extended Kalman filter.
Resumo:
Diabetes is a long-term disease during which the body's production and use of insulin are impaired, causing glucose concentration level to increase in the bloodstream. Regulating blood glucose levels as close to normal as possible leads to a substantial decrease in long-term complications of diabetes. In this paper, an intelligent online feedback-treatment strategy is presented for the control of blood glucose levels in diabetic patients using single network adaptive critic (SNAC) neural networks (which is based on nonlinear optimal control theory). A recently developed mathematical model of the nonlinear dynamics of glucose and insulin interaction in the blood system has been revised and considered for synthesizing the neural network for feedback control. The idea is to replicate the function of pancreatic insulin, i.e. to have a fairly continuous measurement of blood glucose and a situation-dependent insulin injection to the body using an external device. Detailed studies are carried out to analyze the effectiveness of this adaptive critic-based feedback medication strategy. A comparison study with linear quadratic regulator (LQR) theory shows that the proposed nonlinear approach offers some important advantages such as quicker response, avoidance of hypoglycemia problems, etc. Robustness of the proposed approach is also demonstrated from a large number of simulations considering random initial conditions and parametric uncertainties. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
An entirely different approach for localisation of winding deformation based on terminal measurements is presented. Within the context of this study, winding deformation means, a discrete and specific change externally imposed at a particular position on the winding. The proposed method is based on pre-computing and plotting the complex network-function loci e.g. driving-point impedance (DPI)] at a selected frequency, for a meaningful range of values for each element (increasing and decreasing) of the ladder network which represents the winding. This loci diagram is called the nomogram. After introducing a discrete change, amplitude and phase of DPI are measured. By plotting this single measurement on the nomogram, it is possible to estimate the location and identify the extent of change. In contrast to the existing approach, the proposed method is fast, non-iterative and yields reasonably good localisation. Experimental results for actual transformer windings (interleaved and continuous disc) are presented.
Resumo:
A novel procedure to determine the series capacitance of a transformer winding, based on frequency-response measurements, is reported. It is based on converting the measured driving-point impedance magnitude response into a rational function and thereafter exploiting the ratio of a specific coefficient in the numerator and denominator polynomial, which leads to the direct estimation of series capacitance. The theoretical formulations are derived for a mutually coupled ladder-network model, followed by sample calculations. The results obtained are accurate and its feasibility is demonstrated by experiments on model-coil and on actual, single, isolated transformer windings (layered, continuous disc, and interleaved disc). The authors believe that the proposed method is the closest one can get to indirectly measuring series capacitance.
Resumo:
Central to network tomography is the problem of identifiability, the ability to identify internal network characteristics uniquely from end-to-end measurements. This problem is often underconstrained even when internal network characteristics such as link delays are modeled as additive constants. While it is known that the network topology can play a role in determining the extent of identifiability, there is a lack in the fundamental understanding of being able to quantify it for a given network. In this paper, we consider the problem of identifying additive link metrics in an arbitrary undirected network using measurement nodes and establishing paths/cycles between them. For a given placement of measurement nodes, we define and derive the ``link rank'' of the network-the maximum number of linearly independent cycles/paths that may be established between the measurement nodes. We achieve this in linear time. The link rank helps quantify the exact extent of identifiability in a network. We also develop a quadratic time algorithm to compute a set of cycles/paths that achieves the maximum rank.
Resumo:
We report a novel 1D J-edited pure shift NMR experiment (J-PSHIFT) that was constructed from a pseudo 2D experiment for the direct measurement of proton-proton scalar couplings. The experiment gives homonuclear broad-band H-1-decoupled H-1 NMR spectra, which provide a single peak for chemically distinct protons, and only retain the homonuclear-scalar-coupled doublet pattern at the chemical-shift positions of the protons in the coupled network of a specific proton. This permits the direct and unambiguous measurement of the magnitudes of the couplings. The incorporation of a 1D selective correlation spectroscopy (COSY)/ total correlation spectroscopy (TOCSY) block in lieu of the initial selective pulse, results in the exclusive detection of the correlated spectrum of a specific proton.
Resumo:
We report a circuit technique to measure the on-chip delay of an individual logic gate (both inverting and non-inverting) in its unmodified form using digitally reconfigurable ring oscillator (RO). Solving a system of linear equations with different configuration setting of the RO gives delay of an individual gate. Experimental results from a test chip in 65nm process node show the feasibility of measuring the delay of an individual inverter to within 1pS accuracy. Delay measurements of different nominally identical inverters in close physical proximity show variations of up to 26% indicating the large impact of local or within-die variations.
Resumo:
In this paper, we propose a new load distribution strategy called `send-and-receive' for scheduling divisible loads, in a linear network of processors with communication delay. This strategy is designed to optimally utilize the network resources and thereby minimizes the processing time of entire processing load. A closed-form expression for optimal size of load fractions and processing time are derived when the processing load originates at processor located in boundary and interior of the network. A condition on processor and link speed is also derived to ensure that the processors are continuously engaged in load distributions. This paper also presents a parallel implementation of `digital watermarking problem' on a personal computer-based Pentium Linear Network (PLN) topology. Experiments are carried out to study the performance of the proposed strategy and results are compared with other strategies found in literature.
Resumo:
On the basis of a more realistic tetrakaidecahedral structure of foam bubbles, a network model of static foam drainage has been developed. The model considers the foam to be made up of films and Plateau borders. The films drain into the adjacent Plateau borders, which in turn form a network through which the liquid moves from the foam to the liquid pool. From the structure, a unit flow cell was found, which constitutes the foam when stacked together both horizontally and vertically. Symmetry in the unit flow cell indicates that the flow analysis of a part of it can be employed to obtain the drainage for the whole foam. Material balance equations have been written for each segment of this subsection, ensuring connectivity, and solved with the appropriate boundary and initial conditions. The calculated rates of drainage, when compared with the available experimental results, indicate that the model predicts the experimental results well.