116 resultados para Nadaraya- Watson estimator
em Indian Institute of Science - Bangalore - Índia
Resumo:
We study the secondary structure of RNA determined by Watson-Crick pairing without pseudo-knots using Milnor invariants of links. We focus on the first non-trivial invariant, which we call the Heisenber invariant. The Heisenberg invariant, which is an integer, can be interpreted in terms of the Heisenberg group as well as in terms of lattice paths. We show that the Heisenberg invariant gives a lower bound on the number of unpaired bases in an RNA secondary structure. We also show that the Heisenberg invariant can predict allosteric structures for RNA. Namely, if the Heisenberg invariant is large, then there are widely separated local maxima (i.e., allosteric structures) for the number of Watson-Crick pairs found.
Resumo:
The titled complex, obtained by co-crystallization (EtOH/25 degrees C),is apparently the only known complex of the free bases. Its crystal structure, as determined by X-ray diffraction at both 90 K and 313 K, showed that one A-T pair involves a Hoogsteen interaction, and the other a Watson-Crick interaction but only with respect to the adenine unit. The absence of a clear-cut Watson-Crick base pair raises intriguing questions about the basis of the DNA double helix. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In many problems of decision making under uncertainty the system has to acquire knowledge of its environment and learn the optimal decision through its experience. Such problems may also involve the system having to arrive at the globally optimal decision, when at each instant only a subset of the entire set of possible alternatives is available. These problems can be successfully modelled and analysed by learning automata. In this paper an estimator learning algorithm, which maintains estimates of the reward characteristics of the random environment, is presented for an automaton with changing number of actions. A learning automaton using the new scheme is shown to be e-optimal. The simulation results demonstrate the fast convergence properties of the new algorithm. The results of this study can be extended to the design of other types of estimator algorithms with good convergence properties.
Resumo:
A posteriori error estimation and adaptive refinement technique for fracture analysis of 2-D/3-D crack problems is the state-of-the-art. The objective of the present paper is to propose a new a posteriori error estimator based on strain energy release rate (SERR) or stress intensity factor (SIF) at the crack tip region and to use this along with the stress based error estimator available in the literature for the region away from the crack tip. The proposed a posteriori error estimator is called the K-S error estimator. Further, an adaptive mesh refinement (h-) strategy which can be used with K-S error estimator has been proposed for fracture analysis of 2-D crack problems. The performance of the proposed a posteriori error estimator and the h-adaptive refinement strategy have been demonstrated by employing the 4-noded, 8-noded and 9-noded plane stress finite elements. The proposed error estimator together with the h-adaptive refinement strategy will facilitate automation of fracture analysis process to provide reliable solutions.
Resumo:
In this work, the grid mismatch problem for a single snapshot direction of arrival estimation problem is studied. We derive a Bayesian Cramer-Rao bound for the grid mismatch problem with the errors in variables model and propose a block sparse estimator for grid matching and sparse recovery.
Resumo:
Recent focus of flood frequency analysis (FFA) studies has been on development of methods to model joint distributions of variables such as peak flow, volume, and duration that characterize a flood event, as comprehensive knowledge of flood event is often necessary in hydrological applications. Diffusion process based adaptive kernel (D-kernel) is suggested in this paper for this purpose. It is data driven, flexible and unlike most kernel density estimators, always yields a bona fide probability density function. It overcomes shortcomings associated with the use of conventional kernel density estimators in FFA, such as boundary leakage problem and normal reference rule. The potential of the D-kernel is demonstrated by application to synthetic samples of various sizes drawn from known unimodal and bimodal populations, and five typical peak flow records from different parts of the world. It is shown to be effective when compared to conventional Gaussian kernel and the best of seven commonly used copulas (Gumbel-Hougaard, Frank, Clayton, Joe, Normal, Plackett, and Student's T) in estimating joint distribution of peak flow characteristics and extrapolating beyond historical maxima. Selection of optimum number of bins is found to be critical in modeling with D-kernel.
Resumo:
We address the problem of designing an optimal pointwise shrinkage estimator in the transform domain, based on the minimum probability of error (MPE) criterion. We assume an additive model for the noise corrupting the clean signal. The proposed formulation is general in the sense that it can handle various noise distributions. We consider various noise distributions (Gaussian, Student's-t, and Laplacian) and compare the denoising performance of the estimator obtained with the mean-squared error (MSE)-based estimators. The MSE optimization is carried out using an unbiased estimator of the MSE, namely Stein's Unbiased Risk Estimate (SURE). Experimental results show that the MPE estimator outperforms the SURE estimator in terms of SNR of the denoised output, for low (0 -10 dB) and medium values (10 - 20 dB) of the input SNR.
Resumo:
A residual based a posteriori error estimator is derived for a quadratic finite element method (FEM) for the elliptic obstacle problem. The error estimator involves various residuals consisting of the data of the problem, discrete solution and a Lagrange multiplier related to the obstacle constraint. The choice of the discrete Lagrange multiplier yields an error estimator that is comparable with the error estimator in the case of linear FEM. Further, an a priori error estimate is derived to show that the discrete Lagrange multiplier converges at the same rate as that of the discrete solution of the obstacle problem. The numerical experiments of adaptive FEM show optimal order convergence. This demonstrates that the quadratic FEM for obstacle problem exhibits optimal performance.
Resumo:
The effect of multiplicative noise on a signal when compared with that of additive noise is very large. In this paper, we address the problem of suppressing multiplicative noise in one-dimensional signals. To deal with signals that are corrupted with multiplicative noise, we propose a denoising algorithm based on minimization of an unbiased estimator (MURE) of meansquare error (MSE). We derive an expression for an unbiased estimate of the MSE. The proposed denoising is carried out in wavelet domain (soft thresholding) by considering time-domain MURE. The parameters of thresholding function are obtained by minimizing the unbiased estimator MURE. We show that the parameters for optimal MURE are very close to the optimal parameters considering the oracle MSE. Experiments show that the SNR improvement for the proposed denoising algorithm is competitive with a state-of-the-art method.
Resumo:
The two molecules in the asymmetric unit of adenosine-5'-carboxylic acid, C10H11N5O5, exist as zwitterions with N1 protonated and the carboxyl groups ionized. Both molecules are in an anti conformation with glycosyl torsion angles of -161.4(3) and -155.5(3)degrees. The ribose moieties adopt a C3-endo-C2-exo twist conformation. The pseudo-rotation parameters are P = 0.01(1) and 6.58(1)degrees, and tau(m) = 36.2(2) and 34.6(2)degrees, for molecules A and B, respectively. The carboxyl groups of A and B are not in the standard g(+), g(-) or t conformations. Both Watson-Crick sites, N1 and N6, of the adenine bases are involved in a pair of hydrogen bonds with the dissociated carboxyl groups, forming a cyclic tetramer. The adenine base of molecule A stacks on the ribose O4' atom of a symmetry-related B molecule at a distance of 2.88 Angstrom; the adenine base of B stacks in an analogous way at a distance of 2.91 Angstrom.
Resumo:
Doppler weather radars with fast scanning rates must estimate spectral moments based on a small number of echo samples. This paper concerns the estimation of mean Doppler velocity in a coherent radar using a short complex time series. Specific results are presented based on 16 samples. A wide range of signal-to-noise ratios are considered, and attention is given to ease of implementation. It is shown that FFT estimators fare poorly in low SNR and/or high spectrum-width situations. Several variants of a vector pulse-pair processor are postulated and an algorithm is developed for the resolution of phase angle ambiguity. This processor is found to be better than conventional processors at very low SNR values. A feasible approximation to the maximum entropy estimator is derived as well as a technique utilizing the maximization of the periodogram. It is found that a vector pulse-pair processor operating with four lags for clear air observation and a single lag (pulse-pair mode) for storm observation may be a good way to estimate Doppler velocities over the entire gamut of weather phenomena.
Resumo:
The Watson-Crick type of base pairing is considered to be mandatory for the formation of duplex DNA. However, conformational calculations carried out in our laboratory, have shown that some combinations of backbone torsion angles and sugar pucker lead to duplexes with Hoogsteen type of base pairing also. Here we present the results of energy calculations performed on A-T containing doublet sequences in the D-form with both Hoogsteen and Watson-Crick type of base pairing and the 3 viable models for the A-T containing polynucleotide duplex poly[d(A-T)].