444 resultados para Modified Berlekamp-Massey algorithm
em Indian Institute of Science - Bangalore - Índia
Resumo:
The associated model for binary systems has been modified to include volume effects and excess entropy arising from preferential interactions between the associate and the free atoms or between the free atoms. Equations for thermodynamic mixing functions have been derived. An optimization procedure using a modified conjugate gradient method has been used to evaluate the enthalpy and entropy interaction energies, the free energy of dissociation of the complex, its temperature dependance and the size of the associate. An expression for the concentration—concentration structure factor [Scc (0)] has been deduced from the modified associated solution model. The analysis has been applied to the thermodynamic mixing functions of liquid Ga-Te alloys at 1120 K, believed to contain Ga2Te3 associates. It is observed that the modified associated solution model incorporating volume effects and terms for the temperature dependance of interaction energies, describes the thermodynamic properties of Ga-Te system satisfactorily.
Resumo:
We investigate into the limitations of the sum-product algorithm in the probability domain over graphs with isolated short cycles. By considering the statistical dependency of messages passed in a cycle of length 4, we modify the update equations for the beliefs at the variable and check nodes. We highlight an approximate log domain algebra for the modified variable node update to ensure numerical stability. At higher signal-to-noise ratios (SNR), the performance of decoding over graphs with isolated short cycles using the modified algorithm is improved compared to the original message passing algorithm (MPA).
Resumo:
A closed-loop steering logic based on an optimal (2-guidance is developed here. The guidance system drives the satellite launch vehicle along a two- or three- dimensional trajectory for placing the payload into a specified circular orbit. The modified g-guidance algorithm makes use of the optimal required velocity vector, which minimizes the total impulse needed for an equivalent two-impluse transfer from the present state to the final orbit. The required velocity vector is defined as velocity of the vehicle on the hypothetical transfer orbit immediately after the application of the first impulse. For this optimal transfer orbit, a simple and elegant expression for the Q-matrix is derived. A working principle for the guidance algorithm in terms of the major and minor cycles, and also for the generation of the steering command, is outlined.
Resumo:
The letter describes a method of improving the dynamic range of a continuously variable slope delta modulator (CVSD). This is achieved by modifying the basic step size delta0 Compared to the CVSD algorithm, the modified CVSD (MCVSD) algorithm yields about 15–20 dB dynamic range improvement without degrading the peak SNR and the bit error rate tolerance.
Resumo:
Solution of generalized eigenproblem, K phi = lambda M phi, by the classical inverse iteration method exhibits slow convergence for some eigenproblems. In this paper, a modified inverse iteration algorithm is presented for improving the convergence rate. At every iteration, an optimal linear combination of the latest and the preceding iteration vectors is used as the input vector for the next iteration. The effectiveness of the proposed algorithm is demonstrated for three typical eigenproblems, i.e. eigenproblems with distinct, close and repeated eigenvalues. The algorithm yields 29, 96 and 23% savings in computational time, respectively, for these problems. The algorithm is simple and easy to implement, and this renders the algorithm even more attractive.
Resumo:
Numerical Linear Algebra (NLA) kernels are at the heart of all computational problems. These kernels require hardware acceleration for increased throughput. NLA Solvers for dense and sparse matrices differ in the way the matrices are stored and operated upon although they exhibit similar computational properties. While ASIC solutions for NLA Solvers can deliver high performance, they are not scalable, and hence are not commercially viable. In this paper, we show how NLA kernels can be accelerated on REDEFINE, a scalable runtime reconfigurable hardware platform. Compared to a software implementation, Direct Solver (Modified Faddeev's algorithm) on REDEFINE shows a 29X improvement on an average and Iterative Solver (Conjugate Gradient algorithm) shows a 15-20% improvement. We further show that solution on REDEFINE is scalable over larger problem sizes without any notable degradation in performance.
Resumo:
This paper proposes an algorithm for joint data detection and tracking of the dominant singular mode of a time varying channel at the transmitter and receiver of a time division duplex multiple input multiple output beamforming system. The method proposed is a modified expectation maximization algorithm which utilizes an initial estimate to track the dominant modes of the channel at the transmitter and the receiver blindly; and simultaneously detects the un known data. Furthermore, the estimates are constrained to be within a confidence interval of the previous estimate in order to improve the tracking performance and mitigate the effect of error propagation. Monte-Carlo simulation results of the symbol error rate and the mean square inner product between the estimated and the true singular vector are plotted to show the performance benefits offered by the proposed method compared to existing techniques.
Resumo:
Maximum likelihood (ML) algorithms, for the joint estimation of synchronisation impairments and channel in multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) system, are investigated in this work. A system model that takes into account the effects of carrier frequency offset, sampling frequency offset, symbol timing error and channel impulse response is formulated. Cramer-Rao lower bounds for the estimation of continuous parameters are derived, which show the coupling effect among different impairments and the significance of the joint estimation. The authors propose an ML algorithm for the estimation of synchronisation impairments and channel together, using the grid search method. To reduce the complexity of the joint grid search in the ML algorithm, a modified ML (MML) algorithm with multiple one-dimensional searches is also proposed. Further, a stage-wise ML (SML) algorithm using existing algorithms, which estimate less number of parameters, is also proposed. Performance of the estimation algorithms is studied through numerical simulations and it is found that the proposed ML and MML algorithms exhibit better performance than SML algorithm.
Resumo:
This paper studies a pilot-assisted physical layer data fusion technique known as Distributed Co-Phasing (DCP). In this two-phase scheme, the sensors first estimate the channel to the fusion center (FC) using pilots sent by the latter; and then they simultaneously transmit their common data by pre-rotating them by the estimated channel phase, thereby achieving physical layer data fusion. First, by analyzing the symmetric mutual information of the system, it is shown that the use of higher order constellations (HOC) can improve the throughput of DCP compared to the binary signaling considered heretofore. Using an HOC in the DCP setting requires the estimation of the composite DCP channel at the FC for data decoding. To this end, two blind algorithms are proposed: 1) power method, and 2) modified K-means algorithm. The latter algorithm is shown to be computationally efficient and converges significantly faster than the conventional K-means algorithm. Analytical expressions for the probability of error are derived, and it is found that even at moderate to low SNRs, the modified K-means algorithm achieves a probability of error comparable to that achievable with a perfect channel estimate at the FC, while requiring no pilot symbols to be transmitted from the sensor nodes. Also, the problem of signal corruption due to imperfect DCP is investigated, and constellation shaping to minimize the probability of signal corruption is proposed and analyzed. The analysis is validated, and the promising performance of DCP for energy-efficient physical layer data fusion is illustrated, using Monte Carlo simulations.
Resumo:
This paper extends the iterative linear matrix inequality algorithm (ILMI) for systems having non-ideal PI, PD and PID implementations. The new algorithm uses the practical implementation of the feedback blocksto form the equivalent static output feedback plant. The LMI based synthesis techniques are used in the algorithm to design a multi-loop, multi-objective fixed structure control. The benefits of such a control design technique are brought out by applying it to the lateral stabilizing and tracking feedback control problem of a 30cm wingspan micro air vehicle.
Resumo:
The application of computer-aided inspection integrated with the coordinate measuring machine and laser scanners to inspect manufactured aircraft parts using robust registration of two-point datasets is a subject of active research in computational metrology. This paper presents a novel approach to automated inspection by matching shapes based on the modified iterative closest point (ICP) method to define a criterion for the acceptance or rejection of a part. This procedure improves upon existing methods by doing away with the following, viz., the need for constructing either a tessellated or smooth representation of the inspected part and requirements for an a priori knowledge of approximate registration and correspondence between the points representing the computer-aided design datasets and the part to be inspected. In addition, this procedure establishes a better measure for error between the two matched datasets. The use of localized region-based triangulation is proposed for tracking the error. The approach described improves the convergence of the ICP technique with a dramatic decrease in computational effort. Experimental results obtained by implementing this proposed approach using both synthetic and practical data show that the present method is efficient and robust. This method thereby validates the algorithm, and the examples demonstrate its potential to be used in engineering applications.
Resumo:
A modified density matrix renormalization group (DMRG) algorithm is applied to the zigzag spin-1/2 chain with frustrated antiferromagnetic exchange J(1) and J(2) between first and second neighbors. The modified algorithm yields accurate results up to J(2)/J(1) approximate to 4 for the magnetic gap Delta to the lowest triplet state, the amplitude B of the bond order wave phase, the wavelength lambda of the spiral phase, and the spin correlation length xi. The J(2)/J(1) dependences of Delta, B, lambda, and xi provide multiple comparisons to field theories of the zigzag chain. The twist angle of the spiral phase and the spin structure factor yield additional comparisons between DMRG and field theory. Attention is given to the numerical accuracy required to obtain exponentially small gaps or exponentially long correlations near a quantum phase transition.
Resumo:
Spatial resolution in photoacoustic and thermoacoustic tomography is ultrasound transducer (detector) bandwidth limited. For a circular scanning geometry the axial (radial) resolution is not affected by the detector aperture, but the tangential (lateral) resolution is highly dependent on the aperture size, and it is also spatially varying (depending on the location relative to the scanning center). Several approaches have been reported to counter this problem by physically attaching a negative acoustic lens in front of the nonfocused transducer or by using virtual point detectors. Here, we have implemented a modified delay-and-sum reconstruction method, which takes into account the large aperture of the detector, leading to more than fivefold improvement in the tangential resolution in photoacoustic (and thermoacoustic) tomography. Three different types of numerical phantoms were used to validate our reconstruction method. It is also shown that we were able to preserve the shape of the reconstructed objects with the modified algorithm. (C) 2014 Optical Society of America
Resumo:
In this paper, we present a machine learning approach to measure the visual quality of JPEG-coded images. The features for predicting the perceived image quality are extracted by considering key human visual sensitivity (HVS) factors such as edge amplitude, edge length, background activity and background luminance. Image quality assessment involves estimating the functional relationship between HVS features and subjective test scores. The quality of the compressed images are obtained without referring to their original images ('No Reference' metric). Here, the problem of quality estimation is transformed to a classification problem and solved using extreme learning machine (ELM) algorithm. In ELM, the input weights and the bias values are randomly chosen and the output weights are analytically calculated. The generalization performance of the ELM algorithm for classification problems with imbalance in the number of samples per quality class depends critically on the input weights and the bias values. Hence, we propose two schemes, namely the k-fold selection scheme (KS-ELM) and the real-coded genetic algorithm (RCGA-ELM) to select the input weights and the bias values such that the generalization performance of the classifier is a maximum. Results indicate that the proposed schemes significantly improve the performance of ELM classifier under imbalance condition for image quality assessment. The experimental results prove that the estimated visual quality of the proposed RCGA-ELM emulates the mean opinion score very well. The experimental results are compared with the existing JPEG no-reference image quality metric and full-reference structural similarity image quality metric.
Resumo:
A modified least mean fourth (LMF) adaptive algorithm applicable to non-stationary signals is presented. The performance of the proposed algorithm is studied by simulation for non-stationarities in bandwidth, centre frequency and gain of a stochastic signal. These non-stationarities are in the form of linear, sinusoidal and jump variations of the parameters. The proposed LMF adaptation is found to have better parameter tracking capability than the LMS adaptation for the same speed of convergence.