5 resultados para Minimally Invasive Surgical Procedures
em Indian Institute of Science - Bangalore - Índia
Resumo:
Arteries are heterogeneous, composite structures that undergo large cyclic deformations during blood transport. Presence, build-up and consequent rupture of blockages in blood vessels, called atherosclerotic plaques, lead to disruption in the blood flow that can eventually be fatal. Abnormal lipid profile and hypertension are the main risk factors for plaque progression. Treatments span from pharmacological methods, to minimally invasive balloon angioplasty and stent procedures, and finally to surgical alternatives. There is a need to understand arterial disease progression and devise methods to detect, control, treat and manage arterial disease through early intervention. Local delivery through drug eluting stents also provide an attractive option for maintaining vessel integrity and restoring blood flow while releasing controlled amount of drug to reduce and alleviate symptoms. Development of drug eluting stents is hence interesting albeit challenging because it requires an integration of knowledge of mechanical properties with material transport of drug through the arterial wall to produce a desired biochemical effect. Although experimental models are useful in studying such complex multivariate phenomena, numerical models of mass transport in the vessel have proved immensely useful to understand and delineate complex interactions between chemical species, physical parameters and biological variables. The goals of this review are to summarize literature based on studies of mass transport involving low density lipoproteins in the arterial wall. We also discuss numerical models of drug elution from stents in layered and porous arterial walls that provide a unique platform that can be exploited for the design of novel drug eluting stents.
Resumo:
Noninvasive or minimally invasive identification of sentinel lymph node (SLN) is essential to reduce the surgical effects of SLN biopsy. Photoacoustic (PA) imaging of SLN in animal models has shown its promise for clinical use in the future. Here, we present a Monte Carlo simulation for light transport in the SLN for various light delivery configurations with a clinical ultrasound probe. Our simulation assumes a realistic tissue layer model and also can handle the transmission/reflectance at SLN-tissue boundary due to the mismatch of refractive index. Various light incidence angles show that for deeply situated SLNs the maximum absorption of light in the SLN is for normal incidence. We also show that if a part of the diffused reflected photons is reflected back into the skin using a reflector, the absorption of light in the SLN can be increased significantly to enhance the PA signal. (C) 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)
Resumo:
Robotic surgical tools used in minimally invasive surgeries (MIS) require miniaturized and reliable actuators for precise positioning and control of the end-effector. Miniature pneumatic artificial muscles (MPAMs) are a good choice due to their inert nature, high force to weight ratio, and fast actuation. In this paper, we present the development of miniaturized braided pneumatic muscles with an outer diameter of similar to 1.2 mm, a high contraction ratio of about 18%, and capable of providing a pull force in excess of 4 N at a supply pressure of 0.8 MPa. We present the details of the developed experimental setup, experimental data on contraction and force as a function of applied pressure, and characterization of the MPAM. We also present a simple kinematics and experimental data based model of the braided pneumatic muscle and show that the model predicts contraction in length to within 20% of the measured value. Finally, a robust controller for the MPAMs is developed and validated with experiments and it is shown that the MPAMs have a time constant of similar to 10 ms thereby making them suitable for actuating endoscopic and robotic surgical tools.
Resumo:
Glioblastomas (GBM) are largely incurable as they diffusely infiltrate adjacent brain tissues and are difficult to diagnose at early stages. Biomarkers derived from serum, which can be obtained by minimally invasive procedures, may help in early diagnosis, prognosis and treatment monitoring. To develop a serum cytokine signature, we profiled 48 cytokines in sera derived from normal healthy individuals (n = 26) and different grades of glioma patients (n = 194). We divided the normal and grade IV glioma/GBM serum samples randomly into equal sized training and test sets. In the training set, the Prediction Analysis for Microarrays (PAM) identified a panel of 18 cytokines that could discriminate GBM sera fromnormal sera with maximum accuracy (95.40%) and minimum error (4.60%). The 18-cytokine signature obtained in the training set discriminated GBM sera from normal sera in the test set as well (accuracy 96.55%; error 3.45%). Interestingly, the 18-cytokine signature also differentiated grade II/Diffuse Astrocytoma (DA) and grade III/Anaplastic Astrocytoma (AA) sera from normal sera very efficiently (DA vs. normal-accuracy 96.00%, error 4.00%; AA vs. normal-accuracy 95.83%, error 4.17%). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis using 18 cytokines resulted in the enrichment of two pathways, cytokine-cytokine receptor interaction and JAK-STAT pathways with high significance. Thus our study identified an 18-cytokine signature for distinguishing glioma sera fromnormal healthy individual sera and also demonstrated the importance of their differential abundance in glioma biology.
Resumo:
Realistic and realtime computational simulation of soft biological organs (e.g., liver, kidney) is necessary when one tries to build a quality surgical simulator that can simulate surgical procedures involving these organs. Since the realistic simulation of these soft biological organs should account for both nonlinear material behavior and large deformation, achieving realistic simulations in realtime using continuum mechanics based numerical techniques necessitates the use of a supercomputer or a high end computer cluster which are costly. Hence there is a need to employ soft computing techniques like Support Vector Machines (SVMs) which can do function approximation, and hence could achieve physically realistic simulations in realtime by making use of just a desktop computer. Present work tries to simulate a pig liver in realtime. Liver is assumed to be homogeneous, isotropic, and hyperelastic. Hyperelastic material constants are taken from the literature. An SVM is employed to achieve realistic simulations in realtime, using just a desktop computer. The code for the SVM is obtained from [1]. The SVM is trained using the dataset generated by performing hyperelastic analyses on the liver geometry, using the commercial finite element software package ANSYS. The methodology followed in the present work closely follows the one followed in [2] except that [2] uses Artificial Neural Networks (ANNs) while the present work uses SVMs to achieve realistic simulations in realtime. Results indicate the speed and accuracy that is obtained by employing the SVM for the targeted realistic and realtime simulation of the liver.