32 resultados para Medical imaging technology
em Indian Institute of Science - Bangalore - Índia
Resumo:
We propose a self-regularized pseudo-time marching strategy for ill-posed, nonlinear inverse problems involving recovery of system parameters given partial and noisy measurements of system response. While various regularized Newton methods are popularly employed to solve these problems, resulting solutions are known to sensitively depend upon the noise intensity in the data and on regularization parameters, an optimal choice for which remains a tricky issue. Through limited numerical experiments on a couple of parameter re-construction problems, one involving the identification of a truss bridge and the other related to imaging soft-tissue organs for early detection of cancer, we demonstrate the superior features of the pseudo-time marching schemes.
Resumo:
Thanks to advances in sensor technology, today we have many applications (space-borne imaging, medical imaging, etc.) where images of large sizes are generated. Straightforward application of wavelet techniques for above images involves certain difficulties. Embedded coders such as EZW and SPIHT require that the wavelet transform of the full image be buffered for coding. Since the transform coefficients also require storing in high precision, buffering requirements for large images become prohibitively high. In this paper, we first devise a technique for embedded coding of large images using zero trees with reduced memory requirements. A 'strip buffer' capable of holding few lines of wavelet coefficients from all the subbands belonging to the same spatial location is employed. A pipeline architecure for a line implementation of above technique is then proposed. Further, an efficient algorithm to extract an encoded bitstream corresponding to a region of interest in the image has also been developed. Finally, the paper describes a strip based non-embedded coding which uses a single pass algorithm. This is to handle high-input data rates. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Perception of operator influences ultrasound image acquisition and processing. Lower costs are attracting new users to medical ultrasound. Anticipating an increase in this trend, we conducted a study to quantify the variability in ultrasonic measurements made by novice users and identify methods to reduce it. We designed a protocol with four presets and trained four new users to scan and manually measure the head circumference of a fetal phantom with an ultrasound scanner. In the first phase, the users followed this protocol in seven distinct sessions. They then received feedback on the quality of the scans from an expert. In the second phase, two of the users repeated the entire protocol aided by visual cues provided to them during scanning. We performed off-line measurements on all the images using a fully automated algorithm capable of measuring the head circumference from fetal phantom images. The ground truth (198.1 +/- 1.6 mm) was based on sixteen scans and measurements made by an expert. Our analysis shows that: (1) the inter-observer variability of manual measurements was 5.5 mm, whereas the inter-observer variability of automated measurements was only 0.6 mm in the first phase (2) consistency of image appearance improved and mean manual measurements was 4-5 mm closer to the ground truth in the second phase (3) automated measurements were more precise, accurate and less sensitive to different presets compared to manual measurements in both phases. Our results show that visual aids and automation can bring more reproducibility to ultrasonic measurements made by new users.
Resumo:
Electrical Impedance Tomography (EIT) is a computerized medical imaging technique which reconstructs the electrical impedance images of a domain under test from the boundary voltage-current data measured by an EIT electronic instrumentation using an image reconstruction algorithm. Being a computed tomography technique, EIT injects a constant current to the patient's body through the surface electrodes surrounding the domain to be imaged (Omega) and tries to calculate the spatial distribution of electrical conductivity or resistivity of the closed conducting domain using the potentials developed at the domain boundary (partial derivative Omega). Practical phantoms are essentially required to study, test and calibrate a medical EIT system for certifying the system before applying it on patients for diagnostic imaging. Therefore, the EIT phantoms are essentially required to generate boundary data for studying and assessing the instrumentation and inverse solvers a in EIT. For proper assessment of an inverse solver of a 2D EIT system, a perfect 2D practical phantom is required. As the practical phantoms are the assemblies of the objects with 3D geometries, the developing of a practical 2D-phantom is a great challenge and therefore, the boundary data generated from the practical phantoms with 3D geometry are found inappropriate for assessing a 2D inverse solver. Furthermore, the boundary data errors contributed by the instrumentation are also difficult to separate from the errors developed by the 3D phantoms. Hence, the errorless boundary data are found essential to assess the inverse solver in 2D EIT. In this direction, a MatLAB-based Virtual Phantom for 2D EIT (MatVP2DEIT) is developed to generate accurate boundary data for assessing the 2D-EIT inverse solvers and the image reconstruction accuracy. MatVP2DEIT is a MatLAB-based computer program which simulates a phantom in computer and generates the boundary potential data as the outputs by using the combinations of different phantom parameters as the inputs to the program. Phantom diameter, inhomogeneity geometry (shape, size and position), number of inhomogeneities, applied current magnitude, background resistivity, inhomogeneity resistivity all are set as the phantom variables which are provided as the input parameters to the MatVP2DEIT for simulating different phantom configurations. A constant current injection is simulated at the phantom boundary with different current injection protocols and boundary potential data are calculated. Boundary data sets are generated with different phantom configurations obtained with the different combinations of the phantom variables and the resistivity images are reconstructed using EIDORS. Boundary data of the virtual phantoms, containing inhomogeneities with complex geometries, are also generated for different current injection patterns using MatVP2DEIT and the resistivity imaging is studied. The effect of regularization method on the image reconstruction is also studied with the data generated by MatVP2DEIT. Resistivity images are evaluated by studying the resistivity parameters and contrast parameters estimated from the elemental resistivity profiles of the reconstructed phantom domain. Results show that the MatVP2DEIT generates accurate boundary data for different types of single or multiple objects which are efficient and accurate enough to reconstruct the resistivity images in EIDORS. The spatial resolution studies show that, the resistivity imaging conducted with the boundary data generated by MatVP2DEIT with 2048 elements, can reconstruct two circular inhomogeneities placed with a minimum distance (boundary to boundary) of 2 mm. It is also observed that, in MatVP2DEIT with 2048 elements, the boundary data generated for a phantom with a circular inhomogeneity of a diameter less than 7% of that of the phantom domain can produce resistivity images in EIDORS with a 1968 element mesh. Results also show that the MatVP2DEIT accurately generates the boundary data for neighbouring, opposite reference and trigonometric current patterns which are very suitable for resistivity reconstruction studies. MatVP2DEIT generated data are also found suitable for studying the effect of the different regularization methods on reconstruction process. Comparing the reconstructed image with an original geometry made in MatVP2DEIT, it would be easier to study the resistivity imaging procedures as well as the inverse solver performance. Using the proposed MatVP2DEIT software with modified domains, the cross sectional anatomy of a number of body parts can be simulated in PC and the impedance image reconstruction of human anatomy can be studied.
Resumo:
The image reconstruction problem encountered in diffuse optical tomographic imaging is ill-posed in nature, necessitating the usage of regularization to result in stable solutions. This regularization also results in loss of resolution in the reconstructed images. A frame work, that is attributed by model-resolution, to improve the reconstructed image characteristics using the basis pursuit deconvolution method is proposed here. The proposed method performs this deconvolution as an additional step in the image reconstruction scheme. It is shown, both in numerical and experimental gelatin phantom cases, that the proposed method yields better recovery of the target shapes compared to traditional method, without the loss of quantitativeness of the results.
Resumo:
Unmet clinical needs remain the primary driving force for innovations in medical devices. While appropriate mechanisms to protect these innovative outcomes are essential, the performance of clinical trials to ensure safety is also mandated before the invention is ready for public use. Literature explaining the relationship between patenting activities and clinical trials of medical devices is scarce. Linking patent ownership to clinical trials may imply product leadership and value chain control. In this paper, we use patent data from Indian Patent Office (IPO), PCT, and data from Clinical Trials Registry of India (CTRI) to identify whether patent assignees have any role in leading as primary sponsors of clinical trials. A total of 42 primary sponsors are identified from the CTRI database in India. Number of patents awarded to these primary sponsors in the particular medical device, total number of patents awarded to the primary sponsor in all technologies, total number of patents in the specific medical device technology provides an indication of leadership and control in the value chain.
Resumo:
Lateral or transaxial truncation of cone-beam data can occur either due to the field of view limitation of the scanning apparatus or iregion-of-interest tomography. In this paper, we Suggest two new methods to handle lateral truncation in helical scan CT. It is seen that reconstruction with laterally truncated projection data, assuming it to be complete, gives severe artifacts which even penetrates into the field of view. A row-by-row data completion approach using linear prediction is introduced for helical scan truncated data. An extension of this technique known as windowed linear prediction approach is introduced. Efficacy of the two techniques are shown using simulation with standard phantoms. A quantitative image quality measure of the resulting reconstructed images are used to evaluate the performance of the proposed methods against an extension of a standard existing technique.
Resumo:
In a number of applications of computerized tomography, the ultimate goal is to detect and characterize objects within a cross section. Detection of edges of different contrast regions yields the required information. The problem of detecting edges from projection data is addressed. It is shown that the class of linear edge detection operators used on images can be used for detection of edges directly from projection data. This not only reduces the computational burden but also avoids the difficulties of postprocessing a reconstructed image. This is accomplished by a convolution backprojection operation. For example, with the Marr-Hildreth edge detection operator, the filtering function that is to be used on the projection data is the Radon transform of the Laplacian of the 2-D Gaussian function which is combined with the reconstruction filter. Simulation results showing the efficacy of the proposed method and a comparison with edges detected from the reconstructed image are presented
Resumo:
Diffuse optical tomography (DOT) using near-infrared (NIR) light is a promising tool for noninvasive imaging of deep tissue. This technique is capable of quantitative reconstructions of absorption coefficient inhomogeneities of tissue. The motivation for reconstructing the optical property variation is that it, and, in particular, the absorption coefficient variation, can be used to diagnose different metabolic and disease states of tissue. In DOT, like any other medical imaging modality, the aim is to produce a reconstruction with good spatial resolution and accuracy from noisy measurements. We study the performance of a phase array system for detection of optical inhomogeneities in tissue. The light transport through a tissue is diffusive in nature and can be modeled using diffusion equation if the optical parameters of the inhomogeneity are close to the optical properties of the background. The amplitude cancellation method that uses dual out-of-phase sources (phase array) can detect and locate small objects in turbid medium. The inverse problem is solved using model based iterative image reconstruction. Diffusion equation is solved using finite element method for providing the forward model for photon transport. The solution of the forward problem is used for computing the Jacobian and the simultaneous equation is solved using conjugate gradient search. The simulation studies have been carried out and the results show that a phase array system can resolve inhomogeneities with sizes of 5 mm when the absorption coefficient of the inhomogeneity is twice that of the background tissue. To validate this result, a prototype model for performing a dual-source system has been developed. Experiments are carried out by inserting an inhomogeneity of high optical absorption coefficient in an otherwise homogeneous phantom while keeping the scattering coefficient same. The high frequency (100 MHz) modulated dual out-of-phase laser source light is propagated through the phantom. The interference of these sources creates an amplitude null and a phase shift of 180° along a plane between the two sources with a homogeneous object. A solid resin phantom with inhomogeneities simulating the tumor is used in our experiment. The amplitude and phase changes are found to be disturbed by the presence of the inhomogeneity in the object. The experimental data (amplitude and the phase measured at the detector) are used for reconstruction. The results show that the method is able to detect multiple inhomogeneities with sizes of 4 mm. The localization error for a 5 mm inhomogeneity is found to be approximately 1 mm.
Resumo:
Abstract | A growing interest in the research of chalcogenide glasses can be currently witnessed, which to a large extent is caused by newly opened fields of applications for these materials. Applications in the field of micro- and opto-electronics, xerography and lithography, acousto-optic and memory switching devices and detectors for medical imaging seem to be most remarkable. Accordingly, photo induced phenomena in chalcogenide glasses are attracting much interest. These phenomena can be found both in uniform thin films as well as multilayered films. Among amorphous multilayers, chalcogenide multilayers are attractive because of the potential it has for tailoring the optical properties. I will be presenting some basic idea of photoinduced effects followed by the diffusion mechanisms of Se, Sb and Bi in to As2S3 films.
Resumo:
A Monte Carlo model of ultrasound modulation of multiply scattered coherent light in a highly scattering media has been carried out for estimating the phase shift experienced by a photon beam on its transit through US insonified region. The phase shift is related to the tissue stiffness, thereby opening an avenue for possible breast tumor detection. When the scattering centers in the tissue medium is exposed to a deterministic forcing with the help of a focused ultrasound (US) beam, due to the fact that US-induced oscillation is almost along particular direction, the direction defined by the transducer axis, the scattering events increase, thereby increasing the phase shift experienced by light that traverses through the medium. The phase shift is found to increase with increase in anisotropy g of the medium. However, as the size of the focused region which is the region of interest (ROI) increases, a large number of scattering events take place within the ROI, the ensemble average of the phase shift (Delta phi) becomes very close to zero. The phase of the individual photon is randomly distributed over 2 pi when the scattered photon path crosses a large number of ultrasound wavelengths in the focused region. This is true at high ultrasound frequency (1 MHz) when mean free path length of photon l(s) is comparable to wavelength of US beam. However, at much lower US frequencies (100 Hz), the wavelength of sound is orders of magnitude larger than l(s), and with a high value of g (g 0.9), there is a distinct measurable phase difference for the photon that traverses through the insonified region. Experiments are carried out for validation of simulation results.
Resumo:
Diffuse optical tomography (DOT) is one of the ways to probe highly scattering media such as tissue using low-energy near infra-red light (NIR) to reconstruct a map of the optical property distribution. The interaction of the photons in biological tissue is a non-linear process and the phton transport through the tissue is modelled using diffusion theory. The inversion problem is often solved through iterative methods based on nonlinear optimization for the minimization of a data-model misfit function. The solution of the non-linear problem can be improved by modeling and optimizing the cost functional. The cost functional is f(x) = x(T)Ax - b(T)x + c and after minimization, the cost functional reduces to Ax = b. The spatial distribution of optical parameter can be obtained by solving the above equation iteratively for x. As the problem is non-linear, ill-posed and ill-conditioned, there will be an error or correction term for x at each iteration. A linearization strategy is proposed for the solution of the nonlinear ill-posed inverse problem by linear combination of system matrix and error in solution. By propagating the error (e) information (obtained from previous iteration) to the minimization function f(x), we can rewrite the minimization function as f(x; e) = (x + e)(T) A(x + e) - b(T)(x + e) + c. The revised cost functional is f(x; e) = f(x) + e(T)Ae. The self guided spatial weighted prior (e(T)Ae) error (e, error in estimating x) information along the principal nodes facilitates a well resolved dominant solution over the region of interest. The local minimization reduces the spreading of inclusion and removes the side lobes, thereby improving the contrast, localization and resolution of reconstructed image which has not been possible with conventional linear and regularization algorithm.
Resumo:
We propose a novel numerical method based on a generalized eigenvalue decomposition for solving the diffusion equation governing the correlation diffusion of photons in turbid media. Medical imaging modalities such as diffuse correlation tomography and ultrasound-modulated optical tomography have the (elliptic) diffusion equation parameterized by a time variable as the forward model. Hitherto, for the computation of the correlation function, the diffusion equation is solved repeatedly over the time parameter. We show that the use of a certain time-independent generalized eigenfunction basis results in the decoupling of the spatial and time dependence of the correlation function, thus allowing greater computational efficiency in arriving at the forward solution. Besides presenting the mathematical analysis of the generalized eigenvalue problem on the basis of spectral theory, we put forth the numerical results that compare the proposed numerical method with the standard technique for solving the diffusion equation.
Resumo:
In order to reduce the motion artifacts in DSA, non-rigid image registration is commonly used before subtracting the mask from the contrast image. Since DSA registration requires a set of spatially non-uniform control points, a conventional MRF model is not very efficient. In this paper, we introduce the concept of pivotal and non-pivotal control points to address this, and propose a non-uniform MRF for DSA registration. We use quad-trees in a novel way to generate the non-uniform grid of control points. Our MRF formulation produces a smooth displacement field and therefore results in better artifact reduction than that of registering the control points independently. We achieve improved computational performance using pivotal control points without compromising on the artifact reduction. We have tested our approach using several clinical data sets, and have presented the results of quantitative analysis, clinical assessment and performance improvement on a GPU. (C) 2013 Elsevier Ltd. All rights reserved.