83 resultados para MISFIT DISLOCATIONS

em Indian Institute of Science - Bangalore - Índia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electron microscopy and diffraction studies of ordering in stoichiometric Ni-20%W and off-stoichiometric Ni-15%W alloys have been carried out. The specimens of Ni-20%W were first disordered at 1398 K for 4 h and then quenched rapidly into water. Short range order (SRO) spots were observed at {1 1/2 0}* positions. Two hitherto unknown metastable phases: D-2h(25)-Ni2W and DO22-Ni3W were observed in the diffraction patterns. Long range order (LRO) transformations were studied at 1103 and 1213 K. Kinetics and mechanism of transformations have been identified. Ni-15%W specimens were solution treated at 1523 K for 1 h followed by quenching in water. SRO spots similar to those found in Ni-20%W were observed in this alloy as well. The transition to LRO was studied at 1093 K. Distinct Ni4W precipitates could be observed after 5 h of annealing at this temperature. After 100 h of annealing precipitates were found to grow into faceted shape coherent with the disordered matrix. After prolonged annealing for over 150 h the Ni4W precipitates began to lose coherency by the generation of misfit dislocations. The microstructural observations have been compared for the stoichiometric and off-stoichiometric alloys.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Amorphous Silicon Germanium (a-SiGe) thin films of 500 nm thickness are deposited on silicon substrates using Plasma Enhanced Chemical Vapour Deposition (PECVD). To obtain polycrystalline nature of films, thermal annealing is done at various temperature (450-600 degrees C) and time (1-10 h). The surface morphology of the pre- and post-annealed films is investigated using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The crystallographic structure of the film is obtained by X-ray diffraction method. Raman spectroscopy is carried out to quantify the Ge concentration and the degree of strain relaxation in the film. Nano-indentation is performed to obtain the mechanical properties of the film. It is found that annealing reduces the surface roughness of the film and increases the Ge concentration in the film. The grain size of the film increases with increase in annealing temperature. The grain size is found to decrease with increase in annealing time up to 5 h and then increased. The results show that 550 degrees C for 5 h is the critical annealing condition for variation of structural and mechanical properties of the film. Recrystallization starts at this condition and results in finer grains. An increase in hardness value of 7-8 GPa has been observed. Grain growth occurs above this critical annealing condition and degrades the mechanical properties of the film. The strain in the film is only relaxed to about 55% even for 10 h of annealing at 600 degrees C. Transmission Electron Microscopy (TEM) observations show that the strain relaxation occurs by forming misfit dislocations and these dislocations are confined to the SiGe/Si interface. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study, in two dimensions, the effect of misfit anisotropy on microstructural evolution during precipitation of an ordered beta phase from a disordered alpha matrix; these phases have, respectively, 2- and 6-fold rotation symmetries. Thus, precipitation produces three orientational variants of beta phase particles, and they have an anisotropic (and crystallographically equivalent) misfit strain with the matrix. The anisotropy in misfit is characterized using a parameter t = epsilon(yy)/epsilon(xx), where epsilon(xx) and epsilon(yy) are the principal components of the misfit strain tensor. Our phase field, simulations show that the morphology of beta phase particles is significantly influenced by 1, the level of misfit anisotropy. Particles are circular in systems with dilatational misfit (t = 1), elongated along the direction of lower principal misfit when 0 < t < 1 and elongated along the invariant direction when - 1 <= t <= 0. In the special case of a pure shear misfit strain (t = - 1), the microstructure exhibits star, wedge and checkerboard patterns; these microstructural features are in agreement with those in Ti-Al-Nb alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystals growing from solution, the vapour phase and from supercooled melt exhibit, as a rule, planar faces. The geometry and distribution of dislocations present within the crystals thus grown are strongly related to the growth on planar faces and to the different growth sectors rather than the physical properties of the crystals and the growth methods employed. As a result, many features of generation and geometrical arrangement of defects are common to extremely different crystal species. In this paper these commoner aspects of dislocation generation and configuration which permits one to predict their nature and distribution are discussed. For the purpose of imaging the defects a very versatile and widely applicable technique viz. x-ray diffraction topography is used. Growth dislocations in solution grown crystals follow straight path with strongly defined directions. These preferred directions which in most cases lie within an angle of ±15° to the growth normal depend on the growth direction and on the Burger's vector involved. The potential configuration of dislocations in the growing crystals can be evaluated using the theory developed by Klapper which is based on linear anisotropic elastic theory. The preferred line direction of a particular dislocation corresponds to that in which the dislocation energy per unit growth length is a minimum. The line direction analysis based on this theory enables one to characterise dislocations propagating in a growing crystal. A combined theoretical analysis and experimental investigation based on the above theory is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of misfit (interference or clearance) pin in a large orthotropic plate was solved earlier by the authors for biaxial loading in the principal directions of orthotropy. Here, a more general case of arbitrarily oriented loading is considered. The most important aspect of the problem studied is the partial contact at the pin-hole interface. The solution is obtained by extending the use of ‘inverse technique’ which was successfully applied earlier by the authors to problems of pins in isotropic and orthotropic domains. The loss of symmetry because of the arbitrary orientation of loading makes the problem more complex. Additional parameters are then involved in the inversion of the problem for the solution. Numerical results are presented primarily for a smooth interference fit pin in a typical orthotropic plate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have used phase field simulations to study the effect of misfit and interfacial curvature on diffusion-controlled growth of an isolated precipitate in a supersaturated matrix. Treating our simulations as computer experiments, we compare our simulation results with those based on the Zener–Frank and Laraia–Johnson–Voorhees theories for the growth of non-misfitting and misfitting precipitates, respectively. The agreement between simulations and the Zener–Frank theory is very good in one-dimensional systems. In two-dimensional systems with interfacial curvature (with and without misfit), we find good agreement between theory and simulations, but only at large supersaturations, where we find that the Gibbs–Thomson effect is less completely realized. At small supersaturations, the convergence of instantaneous growth coefficient in simulations towards its theoretical value could not be tracked to completion, because the diffusional field reached the system boundary. Also at small supersaturations, the elevation in precipitate composition matches well with the theoretically predicted Gibbs–Thomson effect in both misfitting and non-misfitting systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activation area and activation enthalpy are determined as a function of stress and temperature for alpha titanium. The results indicated that plastic flow below about 700°K occurs by a single thermally activated mechanism. Activation area determined by differential-stress creep tests falls in the range 80−8b2 and does not systematically depend on the impurity content. The total activation enthalpy derived from the temperature and strain-rate dependence of flow stress is 1.15 eV. The experimental data support a lattice hardening mechanism as controlling the low-temperature deformation in alpha titanium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The density-wave theory of Ramakrishnan and Yussouff is extended to provide a scheme for describing dislocations and other topological defects in crystals. Quantitative calculations are presented for the order-parameter profiles, the atomic configuration, and the free energy of a screw dislocation with Burgers vector b=(a/2, a/2, a/2) in a bcc solid. These calculations are done using a simple parametrization of the direct correlation function and a gradient expansion. It is conventional to express the free energy of the dislocation in a crystal of size R as (λb2/4π)ln(αR/‖b‖), where λ is the shear elastic constant, and α is a measure of the core energy. Our results yield for Na the value α≃1.94a/(‖c1’’‖)1/2 (≃1.85) at the freezing temperature (371 K) and α≃2.48a/(‖c1’’‖)1/2 at 271 K, where c1’’ is the curvature of the first peak of the direct correlation function c(q). Detailed results for the density distribution in the dislocation, particularly the core region, are also presented. These show that the dislocation core has a columnar character. To our knowledge, this study represents the first calculation of dislocation structure, including the core, within the framework of an order-parameter theory and incorporating thermal effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zinc Oxide doped only with Cu shows highly nonlinear I–V characteristics. Microstructural observations of these ceramics reveal the presence of extensive dislocation network. The transmission electron microscopy (TEM) indicates that the dislocations are impurity decorated which arise as a result of limited solubility of CuO in ZnO. It is envisaged that the depletion region is generated in the region containing the dislocations because of the presence of acceptor type traps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The scattering of carriers by charged dislocations in semiconductors is studied within the framework of the linearized Boltzmann transport theory with an emphasis on examining consequences of the extreme anisotropy of the cylindrically symmetric scattering potential. A new closed-form approximate expression for the carrier mobility valid for all temperatures is proposed. The ratios of quantum and transport scattering times are evaluated after averaging over the anisotropy in the relaxation time. The value of the Hall scattering factor computed for charged dislocation scattering indicates that there may be a factor of two error in the experimental mobility estimates using the Hall data. An expression for the resistivity tensor when the dislocations are tilted with respect to the plane of transport is derived. Finally, an expression for the isotropic relaxation time is derived when the dislocations are located within the sample with a uniform angular distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamics and interactions of edge dislocations in a nearly aligned sheared lamellar mesophase is analysed to provide insights into the relationship between disorder and rheology. First, the mesoscale permeation and momentum equations for the displacement field in the presence of external forces are derived from the model H equations for the concentration and momentum field. The secondary flow generated due to the mean shear around an isolated defect is calculated, and the excess viscosity due to the presence of the defect is determined from the excess energy dissipation due to the secondary flow. The excess viscosity for an isolated defect is found to increase with system size in the cross-stream direction as L-3/2 for an isolated defect, though this divergence is cut-off due to interactions in a defect suspension. As the defects are sheared past each other due to the mean flow, the Peach-Koehler force due to elastic interaction between pairs of defects is found to cause no net displacement relative to each other as they approach from large separation to the distance of closest approach. The equivalent force due to viscous interactions is found to increase the separation for defects of opposite sign, and decrease the separation for defects of same sign. During defect interactions, we find that there is no buckling instability due to dilation of layers for systems of realistic size. However, there is another mechanism, which is the velocity difference generated across a slightly deformed bilayer due to the mean shear, which could result in the creation of new defects. (C) 2013 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract: We report the growth and the electron cyclotron resonance measurements of n-type Si/Si0.62Ge0.38 and Si0.94Ge0.06/Si0.62Ge0.38 modulation-doped heterostructures grown by rapid thermal chemical vapor deposition. The strained Si and Si0.94Ge0.06 channels were grown on relaxed Si0.62Ge0.38 buffer layers, which consist of 0.6 mu m uniform Si0.62Ge0.38 layers and 0.5 mu m compositionally graded relaxed SiGe layers from 0 to 38% Ge. The buffer layers were annealed at 800 degrees C for 1 h to obtain complete relaxation. A 75 Angstrom Si(SiGe) channel with a 100 Angstrom spacer and a 300 Angstrom 2 X 10(19) cm(-3) n-type supply layer was grown on the top of the buffer layers. The cross-sectional transmission electron microscope reveals that the dense dislocation network is confined to the buffer layer, and relatively few dislocations terminate on the surface. The plan-view image indicates the threading dislocation density is about 4 X 10(6) cm(-2). The far-infrared measurements of electron cyclotron resonance were performed at 4 K with the magnetic field of 4-8 T. The effective masses determined from the slope of the center frequency of the absorption peak versus applied magnetic field plot are 0.203m(0) and 0.193m(0) for the two dimensional electron gases in the Si and Si0.94Ge0.06 channels, respectively. The Si effective mass is very close to that of a two dimensional electron gas in an Si MOSFET (0.198m(0)). The electron effective mass of Si0.94Ge0.06 is reported for the first time and is about 5% lower than that of pure Si.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hot deformation behavior of hot isostatically pressed (HIPd) P/M IN-100 superalloy has been studied in the temperature range 1000-1200 degrees C and strain rate range 0.0003-10 s(-1) using hot compression testing. A processing map has been developed on the basis of these data and using the principles of dynamic materials modelling. The map exhibited three domains: one at 1050 degrees C and 0.01 s(-1), with a peak efficiency of power dissipation of approximate to 32%, the second at 1150 degrees C and 10 s(-1), with a peak efficiency of approximate to 36% and the third at 1200 degrees C and 0.1 s(-1), with a similar efficiency. On the basis of optical and electron microscopic observations, the first domain was interpreted to represent dynamic recovery of the gamma phase, the second domain represents dynamic recrystallization (DRX) of gamma in the presence of softer gamma', while the third domain represents DRX of the gamma phase only. The gamma' phase is stable upto 1150 degrees C, gets deformed below this temperature and the chunky gamma' accumulates dislocations, which at larger strains cause cracking of this phase. At temperatures lower than 1080 degrees C and strain rates higher than 0.1 s(-1), the material exhibits flow instability, manifested in the form of adiabatic shear bands. The material may be subjected to mechanical processing without cracking or instabilities at 1200 degrees C and 0.1 s(-1), which are the conditions for DRX of the gamma phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An experimental investigation into the dynamic strain ageing (DSA) of a wrought Ni-base superalloy 720Li was conducted. Characteristics of jerky, flow have been studied at intermediate temperatures of 350, 400 and 450 degrees C at strain-rates between 10(-3) and 10(-5) s(-1). Serrations of Type C are predominant within the temperature/strain-rate range explored. The major characteristics of the serrations-i.e. (a) critical plastic strain for onset of serrations, epsilon(c); (b) average stress decrement, Delta sigma(avg); and (c) strain increment between serrations. Delta epsilon(BS)-have been examined at selected temperatures and strain-rates. Negative strain-rate sensitivity was observed in the DSA regime. However. temperature did not influence tensile properties such as yield strength, ultimate strength. elongation, reduction in area, and work hardening rate or fracture features in DSA regime. Analysis of the results Suggests that locking of the mobile dislocations by substitutional alloying elements is responsible for the DSA in alloy 720Li.