74 resultados para Loop spaces.
em Indian Institute of Science - Bangalore - Índia
Resumo:
Experimental results on a loop heat pipe, using R134a as the working fluid, indicates that the liquid inventory in the compensation chamber can significantly influence the operating characteristics. The large liquid inventory in the compensation chamber, under terrestrial conditions, can result in loss of thermal coupling between the compensation chamber and the evaporator core. This causes the operating temperature to increase monotonically. This phenomenon, which has been experimentally observed, is reported in this paper. A theoretical model to predict the steady-state performance of a loop heat pipe with a weak thermal link between the compensation chamber and the core, as observed in the experiment, is also presented. The predicted and the experimentally determined temperatures correlate well.
Resumo:
The problem of decaying states and resonances is examined within the framework of scattering theory in a rigged Hilbert space formalism. The stationary free,''in,'' and ''out'' eigenvectors of formal scattering theory, which have a rigorous setting in rigged Hilbert space, are considered to be analytic functions of the energy eigenvalue. The value of these analytic functions at any point of regularity, real or complex, is an eigenvector with eigenvalue equal to the position of the point. The poles of the eigenvector families give origin to other eigenvectors of the Hamiltonian: the singularities of the ''out'' eigenvector family are the same as those of the continued S matrix, so that resonances are seen as eigenvectors of the Hamiltonian with eigenvalue equal to their location in the complex energy plane. Cauchy theorem then provides for expansions in terms of ''complete'' sets of eigenvectors with complex eigenvalues of the Hamiltonian. Applying such expansions to the survival amplitude of a decaying state, one finds that resonances give discrete contributions with purely exponential time behavior; the background is of course present, but explicitly separated. The resolvent of the Hamiltonian, restricted to the nuclear space appearing in the rigged Hilbert space, can be continued across the absolutely continuous spectrum; the singularities of the continuation are the same as those of the ''out'' eigenvectors. The free, ''in'' and ''out'' eigenvectors with complex eigenvalues and those corresponding to resonances can be approximated by physical vectors in the Hilbert space, as plane waves can. The need for having some further physical information in addition to the specification of the total Hamiltonian is apparent in the proposed framework. The formalism is applied to the Lee–Friedrichs model and to the scattering of a spinless particle by a local central potential. Journal of Mathematical Physics is copyrighted by The American Institute of Physics.
Resumo:
In this paper, two new dual-path based area efficient loop filtercircuits are proposed for Charge Pump Phase Locked Loop (CPPLL). The proposed circuits were designed in 0.25 CSM analog process with 1.8V supply. The proposed circuits achievedup to 85% savings in capacitor area. Simulations showed goodmatch of the new circuits with the conventional circuit. Theproposed circuits are particularly useful in applications thatdemand low die area.
Resumo:
Plasmodium falciparum TIM (PfTIM) is unique in possessing a Phe residue at position 96 in place of the conserved Ser that is found in TIMs from the majority of other organisms. In order to probe the role of residue 96, three PfTIM mutants, F96S, F96H and F96W, have been biochemically and structurally characterized. The three mutants exhibited reduced catalytic efficiency and a decrease in substrate-binding affinity, with the most pronounced effects being observed for F96S and F96H. The k(cat) values and K-m values are (2.54 +/- 0.19) x 10(5) min(-1) and 0.39 +/- 0.049 mM, respectively, for the wild type; (3.72 +/- 0.28) x 10(3) min(-1) and 2.18 +/- 0.028 mM, respectively, for the F96S mutant;(1.11 +/- 0.03) x 10(4) min(-1) and 2.62 +/- 0.042 mM, respectively, for the F96H mutant; and (1.48 +/- 0.05) x 10(5) min(-1) and 1.20 +/- 0.056 mM, respectively, for the F96W mutant. Unliganded and 3-phosphoglycerate (3PG) complexed structures are reported for the wild-type enzyme and the mutants. The ligand binds to the active sites of the wild-type enzyme (wtPfTIM) and the F96W mutant, with a loop-open state in the former and both open and closed states in the latter. In contrast, no density for the ligand could be detected at the active sites of the F96S and F96H mutants under identical conditions. The decrease in ligand affinity could be a consequence of differences in the water network connecting residue 96 to Ser73 in the vicinity of the active site. Soaking of crystals of wtPfTIM and the F96S and F96H mutants resulted in the binding of 3PG at a dimer-interface site. In addition, loop closure at the liganded active site was observed for wtPfTIM. The dimer-interface site in PfTIM shows strong electrostatic anchoring of the phosphate group involving the Arg98 and Lys112 residues of PfTIM.
Resumo:
Let Wm,p denote the Sobolev space of functions on Image n whose distributional derivatives of order up to m lie in Lp(Image n) for 1 less-than-or-equals, slant p less-than-or-equals, slant ∞. When 1 < p < ∞, it is known that the multipliers on Wm,p are the same as those on Lp. This result is true for p = 1 only if n = 1. For, we prove that the integrable distributions of order less-than-or-equals, slant1 whose first order derivatives are also integrable of order less-than-or-equals, slant1, belong to the class of multipliers on Wm,1 and there are such distributions which are not bounded measures. These distributions are also multipliers on Lp, for 1 < p < ∞. Moreover, they form exactly the multiplier space of a certain Segal algebra. We have also proved that the multipliers on Wm,l are necessarily integrable distributions of order less-than-or-equals, slant1 or less-than-or-equals, slant2 accordingly as m is odd or even. We have obtained the multipliers from L1(Image n) into Wm,p, 1 less-than-or-equals, slant p less-than-or-equals, slant ∞, and the multiplier space of Wm,1 is realised as a dual space of certain continuous functions on Image n which vanish at infinity.
Resumo:
Three overlapping assembled epitopes of beta hCG have been mapped using MAb probes and a single step solid phase radioimmunoassay. These epitopes have been shown to be at receptor binding region comprising of the loop region beta Cys93-Cys100. Importance of disulphide bonds in maintaining integrity of these epitopes is assessed. Two MAbs (INN 58 and INN 22) interact with the beta region as well as the alpha C-terminal peptide, while the other MAb INN 24 interacts with only the beta region. Cross-reactivity pattern with beta hCG and hLH as web as the reported crystal structure of hCG substantiates the epitope identification. The results demonstrate utility of MAbs as probes in investigations on three-dimensional structure of gonadatropins.
Resumo:
Learning automata are adaptive decision making devices that are found useful in a variety of machine learning and pattern recognition applications. Although most learning automata methods deal with the case of finitely many actions for the automaton, there are also models of continuous-action-set learning automata (CALA). A team of such CALA can be useful in stochastic optimization problems where one has access only to noise-corrupted values of the objective function. In this paper, we present a novel formulation for noise-tolerant learning of linear classifiers using a CALA team. We consider the general case of nonuniform noise, where the probability that the class label of an example is wrong may be a function of the feature vector of the example. The objective is to learn the underlying separating hyperplane given only such noisy examples. We present an algorithm employing a team of CALA and prove, under some conditions on the class conditional densities, that the algorithm achieves noise-tolerant learning as long as the probability of wrong label for any example is less than 0.5. We also present some empirical results to illustrate the effectiveness of the algorithm.
Resumo:
The dynamics of loop formation by linear polymer chains has been a topic of several theoretical and experimental studies. Formation of loops and their opening are key processes in many important biological processes. Loop formation in flexible chains has been extensively studied by many groups. However, in the more realistic case of semiflexible polymers, not much results are available. In a recent study [K. P. Santo and K. L. Sebastian, Phys. Rev. E 73, 031923 (2006)], we investigated opening dynamics of semiflexible loops in the short chain limit and presented results for opening rates as a function of the length of the chain. We presented an approximate model for a semiflexible polymer in the rod limit based on a semiclassical expansion of the bending energy of the chain. The model provided an easy way to describe the dynamics. In this paper, using this model, we investigate the reverse process, i.e., the loop formation dynamics of a semiflexible polymer chain by describing the process as a diffusion-controlled reaction. We make use of the ``closure approximation'' of Wilemski and Fixman [G. Wilemski and M. Fixman, J. Chem. Phys. 60, 878 (1974)], in which a sink function is used to represent the reaction. We perform a detailed multidimensional analysis of the problem and calculate closing times for a semiflexible chain. We show that for short chains, the loop formation time tau decreases with the contour length of the polymer. But for longer chains, it increases with length obeying a power law and so it has a minimum at an intermediate length. In terms of dimensionless variables, the closing time is found to be given by tau similar to L-n exp(const/L), where n=4.5-6. The minimum loop formation time occurs at a length L-m of about 2.2-2.4. These are, indeed, the results that are physically expected, but a multidimensional analysis leading to these results does not seem to exist in the literature so far.
Resumo:
Choudhuri and Gilman (1987) considered certain implications of the hypothesis that the magnetic flux within the Sun is generated at the bottom of the convection zone and then rises through it. Taking flux rings symmetric around the rotation axis and using reasonable values of different parameters, they found that the Coriolis force deflects these flux rings into trajectories parallel to the rotation axis so that they emerge at rather high latitudes. This paper looks into the question of whether the action of the Coriolis force is subdued when the initial configuration of the flux ring has non-axisymmetries in the form of loop structures. The results depend dramatically on whether the flux ring with the loops lies completely within the convection zone or whether the lower parts of it are embedded in the stable layers underneath the convection zone. In the first case, the Coriolis force supresses the non-axisymmetric perturbations so that the flux ring tends to remain symmetric and the trajectories are very similar to those of Choudhuri and Gilman (1987). In the second case, however, the lower parts of the flux ring may remain anchored underneath the bottom of the convection zone, but the upper parts of the loops still tend to move parallel to the rotation axis and emerge at high latitudes. Thus the problem of the magnetic flux not being able to come out at the sunspot latitudes still persists after the non-axisymmetries in the flux rings are taken into account.
Resumo:
Loop heat pipe is a passive two-phase heat transport device that is gaining importance as a part of spacecraft thermal control systems and also in applications (such as in avionic cooling and submarines). Hard fill of a loop heat pipe occurs when the compensation chamber is full of liquid. A theoretical study is undertaken to investigate the issues underlying the loop beat pipe hard-fill phenomenon. The results of the study suggest that the mass of charge and the presence of a bayonet have significant impact on the loop heat pipe operation. With a largern mass of charge, a loop heat pipe hard fills at a lower heat load. As the heat load increases, there is a steep rise in the loop heat pipe operating temperature. In a loop heat pipe with a saturated compensation chamber, and also in a hard-filled loop heat pipe without a bayonet, the temperature of the compensation chamber and that of the liquid core are nearly equal. When a loop heat pipe with a bayonet hard fills, the compensation chamber and the evaporator core temperatures are different.
Resumo:
The images of Hermite and Laguerre-Sobolev spaces under the Hermite and special Hermite semigroups (respectively) are characterized. These are used to characterize the image of Schwartz class of rapidly decreasing functions f on R-n and C-n under these semigroups. The image of the space of tempered distributions is also considered and a Paley-Wiener theorem for the windowed (short-time) Fourier transform is proved.
Resumo:
In this paper, we study approximatively τ-compact and τ-strongly Chebyshev sets, where τ is the norm or the weak topology. We show that the metric projection onto τ-strongly Chebyshev sets are norm-τ continuous. We characterize approximatively τ-compact and τ-strongly Chebyshev hyperplanes and use them to characterize factor reflexive proximinal subspaces in τ-almost locally uniformly rotund spaces. We also prove some stability results on approximatively τ-compact and τ-strongly Chebyshev subspaces.
Resumo:
Sol-gel derived PbZrO3 (PZ) thin films have been deposited on Pt(111)/Ti/SiO2/Si substrate and according to the pseudotetragonal symmetry of PZ, the relatively preferred (110)t oriented phase formation has been noticed. The room temperature P‐E hysteresis loops have been observed to be slim by nature. The slim hysteresis loops are attributed to the [110]t directional antiparallel lattice motion of Pb ions and by the directionality of the applied electric field. Pure PZ formation has been characterized by the dielectric phase transition at 235 °C and antiferroelectric P‐E hysteresis loops at room temperature. Dielectric response has been characterized within a frequency domain of 100 Hz–1 MHz at various temperatures ranging from 40 to 350 °C. Though frequency dispersion of dielectric behaves like a Maxwell–Wagner type of relaxation, ω2 dependency of ac conductivity indicates that there must be G‐C equivalent circuit dominance at high frequency. The presence of trap charges in PZ has been determined by Arrhenius plots of ac conductivity. The temperature dependent n (calculated from the universal power law of ac conductivity) values indicate an anomalous behavior of the trapped charges. This anomaly has been explained by strongly and weakly correlated potential wells of trapped charges and their behavior on thermal activation. The dominance of circuit∕circuits resembling Maxwell–Wagner type has been investigated by logarithmic Nyquist plots at various temperatures and it has been justified that the dielectric dispersion is not from the actual Maxwell–Wagner-type response.
Resumo:
In this paper, we show existence and uniqueness of a solution to a functional differential equation with infinite delay. We choose an appropriate Frechet space so as to cover a large class of functions to be used as initial functions to obtain existence and uniqueness of solutions.