8 resultados para Learning space design

em Indian Institute of Science - Bangalore - Índia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a systematic construction of high-rate and full-diversity space-frequency block codes for MIMO-OFDM systems. While all prior constructions offer only a maximum rate of one complex symbol per channel use, our construction yields rate equal to the number of transmit antennas and simultaneously achieves full-diversity. The proposed construction works for arbitrary number of transmit antennas and arbitrary channel power delay profile. A key step in this construction is the generalization of the stacked matrix code design criteria given by Bolcskei et.al., (IEEE WCNC 2000). Explicit equivalence of our generalized code design criteria with the Hadamard-product based criteria of W. Su et.al., (lEEE Trans. Sig. Proc. Nov 2003) is established and new high-rate codes are constructed using our criteria.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this two-part series of papers, a generalized non-orthogonal amplify and forward (GNAF) protocol which generalizes several known cooperative diversity protocols is proposed. Transmission in the GNAF protocol comprises of two phases - the broadcast phase and the cooperation phase. In the broadcast phase, the source broadcasts its information to the relays as well as the destination. In the cooperation phase, the source and the relays together transmit a space-time code in a distributed fashion. The GNAF protocol relaxes the constraints imposed by the protocol of Jing and Hassibi on the code structure. In Part-I of this paper, a code design criteria is obtained and it is shown that the GNAF protocol is delay efficient and coding gain efficient as well. Moreover GNAF protocol enables the use of sphere decoders at the destination with a non-exponential Maximum likelihood (ML) decoding complexity. In Part-II, several low decoding complexity code constructions are studied and a lower bound on the Diversity-Multiplexing Gain tradeoff of the GNAF protocol is obtained.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we explore an implementation of a high-throughput, streaming application on REDEFINE-v2, which is an enhancement of REDEFINE. REDEFINE is a polymorphic ASIC combining the flexibility of a programmable solution with the execution speed of an ASIC. In REDEFINE Compute Elements are arranged in an 8x8 grid connected via a Network on Chip (NoC) called RECONNECT, to realize the various macrofunctional blocks of an equivalent ASIC. For a 1024-FFT we carry out an application-architecture design space exploration by examining the various characterizations of Compute Elements in terms of the size of the instruction store. We further study the impact by using application specific, vectorized FUs. By setting up different partitions of the FFT algorithm for persistent execution on REDEFINE-v2, we derive the benefits of setting up pipelined execution for higher performance. The impact of the REDEFINE-v2 micro-architecture for any arbitrary N-point FFT (N > 4096) FFT is also analyzed. We report the various algorithm-architecture tradeoffs in terms of area and execution speed with that of an ASIC implementation. In addition we compare the performance gain with respect to a GPP.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the world of high performance computing huge efforts have been put to accelerate Numerical Linear Algebra (NLA) kernels like QR Decomposition (QRD) with the added advantage of reconfigurability and scalability. While popular custom hardware solution in form of systolic arrays can deliver high performance, they are not scalable, and hence not commercially viable. In this paper, we show how systolic solutions of QRD can be realized efficiently on REDEFINE, a scalable runtime reconfigurable hardware platform. We propose various enhancements to REDEFINE to meet the custom need of accelerating NLA kernels. We further do the design space exploration of the proposed solution for any arbitrary application of size n × n. We determine the right size of the sub-array in accordance with the optimal pipeline depth of the core execution units and the number of such units to be used per sub-array.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents the design and implementation of a learning controller for the Automatic Generation Control (AGC) in power systems based on a reinforcement learning (RL) framework. In contrast to the recent RL scheme for AGC proposed by us, the present method permits handling of power system variables such as Area Control Error (ACE) and deviations from scheduled frequency and tie-line flows as continuous variables. (In the earlier scheme, these variables have to be quantized into finitely many levels). The optimal control law is arrived at in the RL framework by making use of Q-learning strategy. Since the state variables are continuous, we propose the use of Radial Basis Function (RBF) neural networks to compute the Q-values for a given input state. Since, in this application we cannot provide training data appropriate for the standard supervised learning framework, a reinforcement learning algorithm is employed to train the RBF network. We also employ a novel exploration strategy, based on a Learning Automata algorithm,for generating training samples during Q-learning. The proposed scheme, in addition to being simple to implement, inherits all the attractive features of an RL scheme such as model independent design, flexibility in control objective specification, robustness etc. Two implementations of the proposed approach are presented. Through simulation studies the attractiveness of this approach is demonstrated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

On introduit une nouvelle classe de schémas de renforcement des automates d'apprentissage utilisant les estimations des caractéristiques aléatoires de l'environnement. On montre que les algorithmes convergent en probabilité vers le choix optimal des actions. On présente les résultats de simulation et on suggère des applications à un environnement à plusieurs apprentissages

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider the problem of Probably Ap-proximate Correct (PAC) learning of a bi-nary classifier from noisy labeled exam-ples acquired from multiple annotators(each characterized by a respective clas-sification noise rate). First, we consider the complete information scenario, where the learner knows the noise rates of all the annotators. For this scenario, we derive sample complexity bound for the Mini-mum Disagreement Algorithm (MDA) on the number of labeled examples to be ob-tained from each annotator. Next, we consider the incomplete information sce-nario, where each annotator is strategic and holds the respective noise rate as a private information. For this scenario, we design a cost optimal procurement auc-tion mechanism along the lines of Myer-son’s optimal auction design framework in a non-trivial manner. This mechanism satisfies incentive compatibility property,thereby facilitating the learner to elicit true noise rates of all the annotators.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Biomolecular recognition underlying drug-target interactions is determined by both binding affinity and specificity. Whilst, quantification of binding efficacy is possible, determining specificity remains a challenge, as it requires affinity data for multiple targets with the same ligand dataset. Thus, understanding the interaction space by mapping the target space to model its complementary chemical space through computational techniques are desirable. In this study, active site architecture of FabD drug target in two apicomplexan parasites viz. Plasmodium falciparum (PfFabD) and Toxoplasma gondii (TgFabD) is explored, followed by consensus docking calculations and identification of fifteen best hit compounds, most of which are found to be derivatives of natural products. Subsequently, machine learning techniques were applied on molecular descriptors of six FabD homologs and sixty ligands to induce distinct multivariate partial-least square models. The biological space of FabD mapped by the various chemical entities explain their interaction space in general. It also highlights the selective variations in FabD of apicomplexan parasites with that of the host. Furthermore, chemometric models revealed the principal chemical scaffolds in PfFabD and TgFabD as pyrrolidines and imidazoles, respectively, which render target specificity and improve binding affinity in combination with other functional descriptors conducive for the design and optimization of the leads.