325 resultados para Laser Processing
em Indian Institute of Science - Bangalore - Índia
Resumo:
The formation of an ω-Al7Cu2Fe phase during laser cladding of quasicrystal-forming Al65Cu23.3Fe11.7 alloy on a pure aluminium substrate is reported. This phase is found to nucleate at the periphery of primary icosahedral-phase particles. A large number of ω-phase particles form an envelope around the icosahedral phase. On the outer side, they form an interface with an agr-Al solid solution. Detailed transmission electron microscopic observations show that the ω phase exhibits an orientation relationship with the icosahedral phase. Analysis of experimental results suggests that the ω phase forms by precipitation on an icosahedral phase by heterogeneous nucleation and grows into the aluminium-rich melt until supersaturation is exhausted. The microstructural observations are explained in terms of available models of phase transformations.
Resumo:
High-Tc superconducting thin films can be deposited and processed by pulsed and CW lasers, and a respectable materials technology for the Y-Ba-Cu-O superconductor is rapidly emerging. The pulsed laser deposition technique is simple because it produces films with compositions nearly identical to those of the target pellets. A larger variety of substrates can be used, compared to other deposition technologies, because of the relatively low temperature requirements. The laser deposition mechanism has been investigated. As-deposited superconducting films, epitaxial films with smooth surfaces, and multilayer structures with abrupt interfaces have been produced. The electrical transport properties can be changed locally using a focused argon-ion laser by modifying the oxygen stoichiometry. This laser writing can be erased by room-temperature exposure to an oxygen plasma. Other laser patterning methods such as material removal, melt-quench, and direct pattern transfer are being developed.
Resumo:
Laser processing of structure sensitive hypereutectic ductile iron, a cast alloy employed for dynamically loaded automative components, was experimentally investigated over a wide range of process parameters: from power (0.5-2.5 kW) and scan rate (7.5-25 mm s(-1)) leading to solid state transformation, all the way through to melting followed by rapid quenching. Superfine dendritic (at 10(5) degrees C s(-1)) or feathery (at 10(4) degrees C s(-1)) ledeburite of 0.2-0.25 mu m lamellar space, gamma-austenite and carbide in the laser melted and martensite in the transformed zone or heat-affected zone were observed, depending on the process parameters. Depth of geometric profiles of laser transformed or melt zone structures, parameters such as dendrile arm spacing, volume fraction of carbide and surface hardness bear a direct relationship with the energy intensity P/UDb2, (10-100 J mm(-3)). There is a minimum energy intensity threshold for solid state transformation hardening (0.2 J mm(-3)) and similarly for the initiation of superficial melting (9 J mm(-3)) and full melting (15 J mm(-3)) in the case of ductile iron. Simulation, modeling and thermal analysis of laser processing as a three-dimensional quasi-steady moving heat source problem by a finite difference method, considering temperature dependent energy absorptivity of the material to laser radiation, thermal and physical properties (kappa, rho, c(p)) and freezing under non-equilibrium conditions employing Scheil's equation to compute the proportion of the solid enabled determination of the thermal history of the laser treated zone. This includes assessment of the peak temperature attained at the surface, temperature gradients, the freezing time and rates as well as the geometric profile of the melted, transformed or heat-affected zone. Computed geometric profiles or depth are in close agreement with the experimental data, validating the numerical scheme.
Resumo:
Composite coatings containing quasicrystalline (QC) phases in Al-Cu-Fe alloys were prepared by laser cladding using a mixture of the elemental powders. Two substrates, namely pure aluminum and an Al-Si alloy were used. The clad layers were remelted at different scanning velocities to alter the growth conditions of different phases. The process parameters were optimized to produce quasicrystalline phases. The evolution of the microstructure in the coating layer was characterized by detailed microstructural investigation. The results indicate presence of quasicrystals in the aluminum substrate. However, only approximant phase could be observed in the substrate of Al-Si alloys. It is shown that there is a significant transport of Si atoms from the substrate to the clad layer during the cladding and remelting process. The hardness profiles of coatings on aluminum substrate indicate a very high hardness. The coating on Al-Si alloy, on the other hand, is ductile and soft. The fracture toughness of the hard coating on aluminum was obtained by nano-indentation technique. The K1C value was found to be 1.33 MPa m1/2 which is typical of brittle materials.
Resumo:
In order to obtain basic understanding of microstructure evolution in laser-surface-alloyed layers, aluminum was surface alloyed on a pure nickel substrate using a CO2 laser. By varying the laser scanning speed, the composition of the surface layers can be systematically varied. The Ni content in the layer increases with increase in scanning speed. Detailed cross-sectional transmission electron microscopic study reveals complexities in solidification behavior with increased nickel content. It is shown that ordered B2 phase forms over a wide range of composition with subsequent precipitation of Ni2Al, an ordered omega phase in the B2 matrix, during solid-state cooling. For nickel-rich alloys associated with higher laser scan speed, the fcc gamma phase is invariably the first phase to grow from the liquid with solute trapping. The phase reorders in the solid state to yield gamma' Ni3Al. The phase competes with beta AlNi, which forms massively from the liquid. The beta AlNi transforms martensitically to a 3R structure during cooling in solid state. The results can be rationalized in terms of a metastable phase diagram proposed earlier. However, the results are at variance with earlier studies of laser processing of nickel-rich alloys.
Resumo:
A systematic study of Ar ion implantation in cupric oxide films has been reported. Oriented CuO films were deposited by pulsed excimer laser ablation technique on (1 0 0) YSZ substrates. X-ray diffraction (XRD) spectra showed the highly oriented nature of the deposited CuO films. The films were subjected to ion bombardment for studies of damage formation, Implantations were carried out using 100 keV Arf over a dose range between 5 x 10(12) and 5 x 10(15) ions/cm(2). The as-deposited and ion beam processed samples were characterized by XRD technique and resistance versus temperature (R-T) measurements. The activation energies for electrical conduction were found from In [R] versus 1/T curves. Defects play an important role in the conduction mechanism in the implanted samples. The conductivity of the film increases, and the corresponding activation energy decreases with respect to the dose value.
Resumo:
Ex-situ grown thin films of SrBi2Nb2O9 (SBN) were deposited on platinum substrates using laser ablation technique. A low substrate-temperature-processing route was chosen to avoid any diffusion of bismuth into the Pt electrode. It was observed that the as grown films showed an oriented growth along the 'c'-axis (with zero spontaneous polarization). The as grown films were subsequently annealed to enhance crystallization. Upon annealing, these films transformed into a polycrystalline structure, and exhibited excellent ferroelectric properties. The switching was made to be possible by lowering the thickness without losing the electrically insulating behavior of the films. The hysteresis results showed an excellent square-shaped loop with results (P-r = 4 muC/cm(2) E-c = 90 kV/cm) in good agreement with the earlier reports. The films also exhibited a dielectric constant of 190 and a dissipation factor of 0.02, which showed dispersion at low frequencies. The frequency dispersion was found to obey Jonscher's universal power law relation, and was attributed to the ionic charge hopping process according to earlier reports. The de transport studies indicated an ohmic behavior in the low voltage region, while higher voltages induced a bulk space charge and resulted in non-linear current-voltage dependence.
Resumo:
The effect of deposition of Al +Al2O3 on MRI 153 M Mg alloy processed using a pulsed Nd:YAG laser is presented in this study. A composite coating with metallurgical joint to the substrate was formed. The microstructure and phase constituents were characterized and correlated with the thermal predictions. The laser scan speed had an effect on the average melt depth and the amount of retained and/or reconstituted alumina in the final coating. The coating consisted of alumina particles and highly refined dendrites formed due to the extremely high cooling rates (of the order of 10(8) K/s). The microhardness of the coating was higher and several fold improvement of wear resistance compared to the substrate was observed for the coatings. These microstructural features and physical properties were correlated with the effects predicted by a thermal model.
Resumo:
A period timing device suitable for processing laser Doppler anemometer signals has been described here. The important features of this instrument are: it is inexpensive, simple to operate, and easy to fabricate. When the concentration of scattering particles is low the Doppler signal is in the form of a burst and the Doppler frequency is measured by timing the zero crossings of the signal. But the presence of noise calls for the use of validation criterion, and a 5–8 cycles comparison has been used in this instrument. Validation criterion requires the differential count between the 5 and 8 cycles to be multiplied by predetermined numbers that prescribe the accuracy of measurement. By choosing these numbers to be binary numbers, much simplification in circuit design has been accomplished since this permits the use of shift registers for multiplication. Validation accuracies of 1.6%, 3.2%, 6.3%, and 12.5% are possible with this device. The design presented here is for a 16-bit processor and uses TTL components. By substituting Schottky barrier TTLs the clock frequency can be increased from about 10 to 30 MHz resulting in an extension in the range of the instrument. Review of Scientific Instruments is copyrighted by The American Institute of Physics.
Resumo:
A period timing device suitable for processing laser Doppler anemometer signals has been described here. The important features of this instrument are: it is inexpensive, simple to operate, and easy to fabricate. When the concentration of scattering particles is low the Doppler signal is in the form of a burst and the Doppler frequency is measured by timing the zero crossings of the signal. But the presence of noise calls for the use of validation criterion, and a 5–8 cycles comparison has been used in this instrument. Validation criterion requires the differential count between the 5 and 8 cycles to be multiplied by predetermined numbers that prescribe the accuracy of measurement. By choosing these numbers to be binary numbers, much simplification in circuit design has been accomplished since this permits the use of shift registers for multiplication. Validation accuracies of 1.6%, 3.2%, 6.3%, and 12.5% are possible with this device. The design presented here is for a 16-bit processor and uses TTL components. By substituting Schottky barrier TTLs the clock frequency can be increased from about 10 to 30 MHz resulting in an extension in the range of the instrument. Review of Scientific Instruments is copyrighted by The American Institute of Physics.
Resumo:
A creep resistant Mg alloy MRI 230D was subjected to laser surface treatment using Nd:YAG laser equipped with a fiber optics beam delivery system in argon atmosphere. The laser surface treatment produced a fine dendritic microstructure and this treatment was beneficial for the corrosion and wear resistance of the alloy. Long-term linear polarisation resistance and Electrochemical Impedance Spectroscopy measurements confirmed that the polarisation resistance values of laser treated material were twice as high as that for the untreated material. This improved behaviour was due to the finer and more homogenous microstructure of the laser treated surface. The laser treatment also increased surface hardness two times and reduced the wear rate by 25% due to grain refinement and solid solution strengthening.
Resumo:
Polypyrrole (PPy) - multiwalled carbonnanotubes (MWCNT) nanocomposites with various MWCNT loading were prepared by in situ inversion emulsion polymerization technique. High loading of the nano filler were evaluated because of available inherent high interface area for charge separation in the nanocomposites. Solution processing of these conducting polymer nanocomposites is difficult because, most of them are insoluble in organic solvents. Device quality films of these composites were prepared by using pulsed laser deposition techniques (PLD). Comparative study of X-ray photoelectron spectroscopy (XPS) of bulk and film show that there is no chemical modification of polymer on ablation with laser. TEM images indicate PPy layer on MWCNT surface. SEM micrographs indicate that the MWCNT's are distributed throughout the film. It was observed that MWCNT in the composite held together by polymer matrix. Further more MWCNT diameter does not change from bulk to film indicating that the polymer layer remains intact during ablation. Even for very high loadings (80 wt.% of MWCNT's) of nanocomposites device quality films were fabricated, indicating laser ablation is a suitable technique for fabrication of device quality films. Conductivity of both bulk and films were measured using collinear four point probe setup. It was found that overall conductivity increases with increase in MWCNT loading. Comparative study of thickness with conductivity indicates that maximum conductivity was observed around 0.2 mu m. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A variety of applications exist for reverse saturable absorbers (RSAs) in the area of optical pulse processing and computing. An RSA can be used as power limiter/pulse smoother and energy limiter/pulse shortner of laser pulses. A combination of RSA and saturable absorber (SA) can be used for mode locking and pulse shaping between high power laser amplifiers in oscillator amplifier chain. Also, an RSA can be used for the construction of a molecular spatial light modulator (SLM) which acts as an input/output device in optical computers. A detailed review of the theoretical studies of these processes is presented. Current efforts to find RSAs at desired wavelength for testing these theoretical predictions are also discussed.
Resumo:
The sharp increase in microwave power loss (the reverse of what has previously been reported) at the transition temperature in high-Tc superconducting systems such as YBaCu oxide (polycrystalline bulk and thin films obtained by the laser ablation technique) and BiPbSrCaCu oxide is reported. The differences between DC resistivity ( rho ) and the microwave power loss (related to microwave surface resistance) are analysed from the data obtained by a simultaneous measurement set-up. The influence of various parameters, such as preparation conditions, thickness and aging of the sample and the probing frequency (6-18 GHz), on the variation of microwave power loss with temperature is outlined.