277 resultados para Langmuir-Hinshelwood mechanism
em Indian Institute of Science - Bangalore - Índia
Resumo:
Non-stoichiometric substituted cerium vanadates, MxCe1-xVO4 (M = Li, Ca and Fe), were synthesized by solid-state reactions. The crystal structure was analyzed by powder X-ray diffraction and it exhibits a tetragonal zircon Structure, crystallizing in the space group I4(1)/amd with a = 7.3733(4) and c = 6.4909(4) angstrom and Z = 4. Particle sizes were in the range of 600-800 nm, as observed by scanning electron microscopy. The thermal analysis of the compounds showed phase stability up to 1100 degrees C. The UV diffuse reflectance spectra indicated that the compounds have band gaps in the range of 2.6-2.9 eV. The photocatalytic activity of these Compounds was investigated for the first time for the degradation of different dyes, and organics, the oxidation of cyclohexane and the hydroxylation of benzene. The degradation of dyes was modeled using the Langmuir-Hinshelwood kinetics, while the oxidation of cyclohexane and hydroxylation of benzene were modeled using a free radical mechanism and a series reaction mechanism, respectively.
Resumo:
Combustion synthesized oxide and vanadate compounds (CeO2, Fe2O3, CeVO4, and FeVO4) were tested for catalytic hydrogen combustion. The compounds were characterized by X-ray diffraction and X-ray photoelectron spectroscopy. All the four compounds showed good activity and stability for catalytic hydrogen combustion and more than 95% conversion was observed over all the compounds within 500 degrees C. The mechanisms for the reaction over the different classes of compounds (cerium-based and iron-based compounds) were proposed on the basis of spectroscopic observations. The main difference in the mechanisms was in the nature of adsorption of H2 over the sites. The elementary processes for the reaction were proposed, corresponding rate expressions were derived, and the rate parameters for the reaction were estimated using nonlinear regression. Langmuir-Hinshelwood and Eley-Rideal mechanisms were also tested for the reaction and the proposed mechanism was compared with these mechanisms. (c) 2011 American Institute of Chemical Engineers AIChE J, 2012
Resumo:
The present study reports a sonochemical-assisted synthesis of a highly active and coke resistant Ni/TiO2 catalyst for dry and steam reforming of methane. The catalyst was characterized using XRD, TEM, XPS, BET analyzer and TGA/DTA techniques. The TEM analysis showed that Ni nanoparticles were uniformly dispersed on TiO2 surface with a narrow size distribution. The catalyst prepared via this approach exhibited excellent activity and stability for both the reactions compared to the reference catalyst prepared from the conventional wet impregnation method. For dry reforming, 86% CH4 conversion and 84% CO2 conversion was obtained at 700 degrees C. Nearly 92% CH4 conversion and 77% CO selectivity was observed under a H2O/CH4 ratio of 1.2 at 700 degrees C for the steam reforming reaction. In particular, the present catalyst is extremely active and resistant to coke formation for steam reforming at low steam/carbon ratios. There is no significant modification of Ni particles size and no coke deposition, even after a long term reaction, demonstrating its potential applicability as an industrial reformate for hydrogen production. The detailed kinetic studies have been presented for steam reforming and the mechanism involving Langmuir-Hinshelwood kinetics with adsorptive dissociation of CH4 as a rate determining step has been used to correlate the experimental data.
Resumo:
Three inorganic-organic hybrid framework cadmium thiosulfate phases have been investigated for adsorption and photodegradation of organic dye molecules. Different classes of organic dyes, viz., triaryl methane, azo, xanthene, anthraquinone, have been studied. The anionic dyes with sulfonate groups appear to readily adsorb on the cadmium thiosulfate compounds in an aqueous medium. The adsorption of the dye molecules, however, does not create any structural changes on the cadmium thiosulfate compounds, though weak electronic interactions have been observed. The adsorbed dyes have been desorbed partially in an alcoholic medium, suggesting possible applications in scavenging specific anionic dyes from the aqueous solutions. Langmuir adsorption/desorption isotherms have been used to model this behavior. UV-assisted (lambda(max) = 365 nm) photocatalytic decomposition studies on the cationic dyes indicate reasonable activity comparable with that of Degussa P-25 (TiO2) catalyst. Sunlight assisted photocatalyti studies have been carried out in detail employing hybrid framework compounds. The Langmuir-Hinshelwood kinetics model, employed to follow the degradation profile of the organic dyes, indicates that the photocatalytic degradation follows the order: triaryl methane > azo > xanthene.
Resumo:
The ultrasonic degradation of two dyes, Rhodamine B (C28H31ClN2O3) and Rhodamine Blue (C28H32N2O3), were studied in the absence of catalyst and in the presence of two catalysts (combustion-synthesized anatase TiO2 and commercial Degussa P-25 TiO2. The rate of degradation of catalyzed reaction was higher than that obtained with in the absence of the catalysts. Among the catalysts, combustion-synthesized anatase TiO2 degraded the dyes faster when compared to the degradation with commercial Degussa P-25 catalyst. A Langmuir-Hinshelwood kinetic model was developed and the kinetic rate parameters were determined. The effect of other operating parameters, such as initial concentration, pH, temperature, and power intensity, was also investigated. The degradation rate increased with decreasing pH, increasing temperature, and higher intensity.
Resumo:
The ultrasonic degradation of two dyes, Rhodamine B (C28H31ClN2O3) and Rhodamine Blue (C28H32N2O3), were studied in the absence of catalyst and in the presence of two catalysts (combustion-synthesized anatase TiO2 and commercial Degussa P-25 TiO2. The rate of degradation of catalyzed reaction was higher than that obtained with in the absence of the catalysts. Among the catalysts, combustion-synthesized anatase TiO2 degraded the dyes faster when compared to the degradation with commercial Degussa P-25 catalyst. A Langmuir-Hinshelwood kinetic model was developed and the kinetic rate parameters were determined. The effect of other operating parameters, such as initial concentration, pH, temperature, and power intensity, was also investigated. The degradation rate increased with decreasing pH, increasing temperature, and higher intensity.
Resumo:
Transition metal oxide (TiO2, Pe(2)O(3), CoO) loaded MCM-41 and MCM-48 were synthesized by a two-step surfactant-based process. Nanoporous, high surface area compounds were obtained after calcination of the compounds. The catalysts were characterized by SEM, XRD, XPS, UV-vis and BET surface area analysis. The catalysts showed high activity for the photocatalytic degradation of both anionic and cationic dyes. The degradation of the dyes was described using Langmuir-Hinshelwood kinetics and the associated rate parameters were determined.
Resumo:
Transition metal oxide (TiO2, Pe(2)O(3), CoO) loaded MCM-41 and MCM-48 were synthesized by a two-step surfactant-based process. Nanoporous, high surface area compounds were obtained after calcination of the compounds. The catalysts were characterized by SEM, XRD, XPS, UV-vis and BET surface area analysis. The catalysts showed high activity for the photocatalytic degradation of both anionic and cationic dyes. The degradation of the dyes was described using Langmuir-Hinshelwood kinetics and the associated rate parameters were determined.
Resumo:
Late-transition-metal-doped Pt clusters are prevalent in CO oxidation catalysis, as they exhibit better catalytic activity than pure Pt, while reducing the effective cost and poisoning However, completely eliminating the critical problem of Pt poisoning still poses a big challenge. Here, we report for the first time that, among the bimetallic clusters ((Pt3M where M = Co, Ni, and Cu)/MgO(100)), the CO adsorption site inverts for Pt3Co/MgO(100) from Pt to Co, due to the complete uptake of Pt d-states by lattice oxygen. While this resolves the problem of Pt poisoning, good reaction kinetics are predicted through low barriers for Langmuir-Hinshelwood and Mars van Krevelen (MvK) mechanisms of CO oxidation for Pt3Co/MgO(100) and Li-doped MgO(100), respectively. Li doping in MgO(100) compensates for the charge imbalance caused by a spontaneous oxygen vacancy formation. Pt-3 Co/Li-doped MgO(100) stands out as an exceptional CO oxidation catalyst, giving an MvK reaction barrier as low as 0.11 eV. We thereby propose a novel design strategy of d-band center inversion for CO oxidation catalysts with no Pt poisoning and excellent reaction kinetics.
Resumo:
Brust-Schiffrin synthesis (BSS) of metal nanoparticles has emerged as a major breakthrough in the field for its ability to produce highly stable thiol functionalized nanoparticles. In this work, we use a detailed population balance model to conclude that particle formation in BSS is controlled by a new synthesis route: continuous nucleation, growth, and capping of particles throughout the synthesis process. The new mechanism, quite different from the others known in the literature (classical LaMer mechanism, sequential nucleation-growth-capping, and thermodynamic mechanism), successfully explains key features of BSS, including size tuning by varying the amount of capping agent instead of the widely used approach of varying the amount of reducing agent. The new mechanism captures a large body of experimental observations quantitatively, including size tuning and only a marginal effect of the parameters otherwise known to affect particle synthesis sensitively. The new mechanism predicts that, in a constant synthesis environment, continuous nucleation-growth-capping mechanism leads to complete capping of particles (no more growth) at the same size, while the new ones are born continuously, in principle leading to synthesis of more monodisperse particles. This prediction is validated through new experimental measurements.
Resumo:
The two-phase Brust-Schiffrin method (BSM) is used to synthesize highly stable nanoparticles of noble metals. A phase transfer catalyst (PTC) is used to bring in aqueous phase soluble precursors into the organic phase to enable particle synthesis there. Two different mechanisms for phase transfer are advanced in the literature. The first mechanism considers PTC to bring in an aqueous phase soluble precursor by complexing with it. The second mechanism considers the ionic species to be contained in inverse micelles of PTC, with a water core inside. A comprehensive experimental study involving measurement of interfacial tension, viscosity, water content by Karl-Fischer titration, static light scattering, H-1 NMR, and small-angle X-ray scattering is reported in this work to establish that the phase transfer catalyst tetraoctylammonium bromide transfers ions by complexing with them, instead of encapsulating them in inverse micelles. The findings have implications for particle synthesis in two-phase methods such as BSM and their modification to produce more monodispersed particles.
Resumo:
The two-step particle synthesis mechanism, also known as the Finke-Watzky (1997) mechanism, has emerged as a significant development in the field of nanoparticle synthesis. It explains a characteristic feature of the synthesis of transition metal nanoparticles, an induction period in precursor concentration followed by its rapid sigmoidal decrease. The classical LaMer theory (1950) of particle formation fails to capture this behavior. The two-step mechanism considers slow continuous nucleation and autocatalytic growth of particles directly from precursor as its two kinetic steps. In the present work, we test the two-step mechanism rigorously using population balance models. We find that it explains precursor consumption very well, but fails to explain particle synthesis. The effect of continued nucleation on particle synthesis is not suppressed sufficiently by the rapid autocatalytic growth of particles. The nucleation continues to increase breadth of size distributions to unexpectedly large values as compared to those observed experimentally. A number of variations of the original mechanism with additional reaction steps are investigated next. The simulations show that continued nucleation from the beginning of the synthesis leads to formation of highly polydisperse particles in all of the tested cases. A short nucleation window, realized with delayed onset of nucleation and its suppression soon after in one of the variations, appears as one way to explain all of the known experimental observations. The present investigations clearly establish the need to revisit the two-step particle synthesis mechanism.
Resumo:
Based on the topology of C-60 and the resulting non-disjoint nature of the lowest unoccupied molecular orbitals, Ne propose a new model for ferromagnetic exchange in C-60-TDAE. Within the Hubbard model, we find that the ferromagnetic exchange integral is stabilized to first order in the inter-ball transfer integral, while the antiferromagnetic coupling is stabilized only to second order. This difference is adequate to counter the larger phase space available for stabilizing the antiferromagnetic state. Thus, the ground state is found to be ferromagnetic for reasonable inter-ball transfer integrals.
Resumo:
Immunoneutralization of maternal RCP results in a >90% decrease in the content and the incorporation of [2-14C]riboflavin into embryonic FAD as well as a percentage redistribution of both embryonic FMN and riboflavin. This is unaccompanied by any discernible changes in flavin distribution pattern in the maternal liver. Embryonic α-glycerophosphate dehydrogenase and NADPH-cytochrome c reductase register significant decreases in activities in the RCP antiserum-treated rats. These alterations readily explain the arrest of foetal growth culminating in pregnancy termination in the antiserum-treated animals.
Resumo:
This paper describes a mechanism of coupling periodate-oxidized nucleosides to proteins. Each of the dialdehyde groups of a periodate-oxidized nucleoside is shown to couple to lysine residues on different protein molecules through Schiff bases, thereby cross-linking different protein molecules, forming a polymer. This is in contrast to the previous model in which nucleosides were suggested to couple to proteins through a morpholine structure. The cross-linked structure of the nucleoside-antigen, significantly different when compared to the native protein, may affect the specificity and the efficiency of antibody production.