171 resultados para Langmuir Film
em Indian Institute of Science - Bangalore - Índia
Resumo:
We examine the shear-thinning behaviour of a two dimensional yield stress bearing monolayer of sorbitan tristearate at air/water interface. The flow curve consists of a linear region at low shear stresses/shear rates, followed by a stress plateau at higher values. The velocity profile obtained from particle imaging velocimetry indicates that shear banding occurs, showing coexistence of the fluidized region near the rotor and solid region with vanishing shear-rate away from the rotor. In the fluidized region, the velocity profile, which is linear at low shear rates, becomes exponential at the onset of shear-thinning, followed by a time varying velocity profile in the plateau region. At low values of constant applied shear rates, the viscosity of the film increases with time, thus showing aging behaviour like in soft glassy three-dimensional (3D) systems. Further, at the low values of the applied stress in the yield stress regime, the shear-rate fluctuations in time show both positive and negative values, similar to that observed in sheared 3D jammed systems. By carrying out a statistical analysis of these shear-rate fluctuations, we estimate the effective temperature of the soft glassy monolayer using the Galavatti-Cohen steady state fluctuation relation.
Resumo:
The sputter deposition of YBa2Cu3O7-x in a de-diode was performed in pure oxygen medium and an optical spectroscopic study of the resultant discharge revealed strong emissions from both metal atoms and oxygen ions. Emission intensities were studied in pressure range from 0.5 to 3 mbar, with substrate temperatures from 150 to 850 degrees C. Raising the substrate temperature to 850 degrees C increased the number of positive ions and excited neutral atoms. Raising the pressure decreased the emission intensities of excited neutral and ionic species. The results have been compared with those obtained from Langmuir probe measurements. The rise in emission intensities of excited neutrals and ions with temperature suggested the possibility of chemically enhanced physical sputtering of YBa2Cu3O7-x. The effect of process conditions on film composition and quality is also discussed.
Resumo:
Surface composition and depth profile studies of hemiplated thin film CdS:CuzS solar cells have been carried out using x-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) techniques. These studies indicate that the junction is fairly diffused in the as-prepared cell. However, heat treatment of the cell at 210°C in air relatively sharpens the junction and improves the cell performance. Using the Cu(2p3p)/S(2p) ratio as well as the Cu(LVV)/(LMM) Auger intensity ratio, it can be inferred that the nominal valency of copper in the layers above the junction is Cut and it is essentially in the CUSS form. Copper signals are observed from layers deep down in the cell. These seem to appear mostly from the grain boundary region. From the observed concentration of Cd, Cu and S in these deeper layers and the Cu(LVV)/(LMM) ratio it appears that the signals from copper essentially originate partly from copper in CuS and partly from Cu2t trapped in the lattice. It is significant to note that the nominal valence state of copper changes rather abruptly from Cut to Cuz+ across the junction.
Resumo:
We present a systematic investigation of morphological transitions in poly vinylacetate Langmuir monolayers. On compression, the polymer monolayer is converted to a continuous membrane with a thickness of similar to 2-3 nm. Above a certain surface concentration the monolayer, on water, undergoes a morphological transition-buckling, leading to formation of striped patterns of period of lambda(b)similar to 160 nm, as determined from in situ grazing incidence small angle x-ray scattering measurements. The obtained value is much smaller than what has been typically observed for Langmuir monolayers on water or thin films on soft substrates. Using existing theories for buckling of fluidlike films on fluid substrates, we obtain very low values of bending rigidity and Young's modulus of the polymer monolayer compared to that observed earlier for lipid or polymeric monolayers. Since buckling in these monolayers occurs only above a certain surface concentration, we have looked at the possibility that the buckling in these films occurs due to changes in their mechanical properties under compression. Using the model of Huang and Suo of buckling of solidlike films on viscoelastic substrates, we find values of the mechanical properties, which are much closer to the bulk values but still significantly lower. Although the reduction could be along the lines of what has been observed earlier for ultrathin polymer film or surface layers of polymers, the possibility of micromechanical effects also determining the buckling in such polymer monolayers cannot be ruled out. We have provided possible explanation of the buckling of the poly vinylacetate monolayers in terms of the change in isothermal compression modulus with surface concentration.
Resumo:
PVC-graphite polymer thick-film resistors were trimmed by a conventional air abrasive technique and the post-trim drift in resistance with time was found to be negative. The net decrease in resistance of trimmed resistors in a given time was found to be a function of resistor composition, cutting speed and temperature. Detailed studies showed this decrease to be due to a decrease in cut width with time. Two new methods, namely bombardment trimming and radiation trimming, were also tried for adjusting the resistance of these resistors and the results were compared with those obtained from abrasive trimming studies.
Resumo:
Experimental investigations are carried out in the IISc hypersonic shock tunnel on film cooling effectiveness of a single jet (diameter 2 mm and 0.9 mm), and an array forward facing of micro-jets (diameter 300 mu m each) of same effective area (corresponding to the respective single jet). The single jet and the corresponding micro-jets are injected from the stagnation zone of a blunt cone model (58, apex angle and nose radius of 35 mm). Nitrogen and Helium are injected as coolant gases. Experiments are performed at freestream Mach number 5.9, at 0 degrees angle of attack, with a stagnation enthalpy of 1.84 MJ/kg, with and without injections. The ratios of the jet stagnation pressure to the freestream pitot pressure used in the present study are 1.2 and 1.45. Up to 50% reduction in surface heat transfer rate was observed with the array of micro-jets, compared to that of the respective single jet with nitrogen as the coolant, while the corresponding eduction was up to 37% for helium injection, with the schlieren flow visualizations showing no major change in the shock standoff distance, and thus no major changes in other aerodynamic aspects such as drag.
Resumo:
The effect of inclination on laminar film condensation over and under isothermal flat plates is investigated analytically. The complete set of Navier Stokes equations in two dimensions is considered. Analysed as a perturbation problem, the zero-order perturbation represents the boundary layer equations. First and second order perturbations are solved to bring about the leading edge effects. Corresponding velocity and temperature profiles are presented. The results show decrease in heat transfer with larger ∥inclinations∥ from the vertical. Comparison with experimental data of Gerstmann and Griffith indicates a closer agreement of the present results than the analytical results of the same authors.
Resumo:
A study of the essential features of piston rings in the cylinder liner of an internal combustion engine reveals that the lubrication problem posed by it is basically that of a slider bearing. According to steady-flow-hydrodynamics, viz. Image the oil film thickness becomes zero at the dead centre positions as the velocity, U = 0. In practice, however, such a phenomenon cannot be supported by consideration of the wear rates of pistion rings and cylinder liners. This can be explained by including the “squeeze” action term in the
Resumo:
Abstract is not available.
Resumo:
For the purposes of obtaining a number of components with nearly identical thickness distributions over the substrate area and of minimizing the inhomogeneities of the film, it is logical to presume that a substrate rotating on its own axis and revolving around another axis will give more uniformity in film thickness than a substrate only revolving around one axis. In relation to the practical applications, an investigation has been undertaken to study the refinement that can be achieved by using a planar planetary substrate holder. It is shown theoretically that the use of the planetary substrate holder under ideal conditions of source and geometry does not offer any further improvement in uniformity of thickness over the conventional rotary work-holder. It is also shown that the geometrical parameters alone have little influence over the uniformity achieved on a planetary substrate, because of the complex cyclidal motion of any point on it. However, for any given geometry, a non-integral speed ratio of the planetary substrate and the work-holder shows considerably less variation in thickness over the substrate area.
Resumo:
The design and implementation of a complete gas sensor system for liquified petroleum gas (LPG) gas sensing are presented. The system consists of a SnO2 transducer, a lowcost heater, an application specific integrated circuit (ASIC) with front-end interface circuitry, and a microcontroller interface for data logging. The ASIC includes a relaxation-oscillator-based heater driver circuit that is capable of controlling the sensor operating temperature from 100degC to 425degC. The sensor readout circuit in the ASIC, which is based on the resistance to time conversion technique, has been designed to measure the gas sensor response over three orders of resistance change during its interaction with gases.
Resumo:
The integration of hydrophobic and hydrophilic drugs in the polymer microcapsule offers the possibility of developing a new drug delivery system that combines the best features of these two distinct classes of material. Recently, we have reported the encapsulation of an uncharged water-insoluble drug in the polymer membrane. The hydrophobic drug is deposited using a layer-by-layer (LbL) technique, which is based on the sequential adsorption of oppositely charged polyelectrolytes onto a charged substrate. In this paper, we report the encapsulation of two different drugs, which are invariably different in structure and in their solubility in water. We have characterized these dual drug vehicular capsules by confocal laser scanning microscopy, atomic force microscopy, visible microscopy, and transmission electron microscopy. The growth of a thin film on a flat substrate by LbL was monitored by UV−vis spectra. The desorption kinetics of two drugs from the thin film was modeled by a second-order rate model.
Resumo:
The interfacial shear rheological properties of a continuous single-crystalline film of CuS and a 3D particulate gel of CdS nanoparticles (3−5 nm in diameter) formed at toluene−water interfaces have been studied. The ultrathin films (50 nm in thickness) are formed in situ in the shear cell through a reaction at the toluene−water interface between a metal−organic compound in the organic layer and an appropriate reagent for sulfidation in the aqueous layer. Linear viscoelastic spectra of the nanofilms reveal solid-like rheological behavior with the storage modulus higher than the loss modulus over the range of angular frequencies probed. Large strain amplitude sweep measurements on the CdS nanofilms formed at different reactant concentrations suggest that they form a weakly flocculated gel. Under steady shear, the films exhibit a yield stress, followed by a steady shear thinning at high shear rates. The viscoelastic and flow behavior of these films that are in common with those of many 3D “soft” materials like gels, foams, and concentrated colloidal suspensions can be described by the “soft” glassy rheology model.