425 resultados para Laminated Composite Plates
em Indian Institute of Science - Bangalore - Índia
Resumo:
In this paper an attempt is made to obtain deflections of hybrid, laminated, rectangular and skew composite plates. Analysis is performed by employing the Galerkin technique. Numerical results have been obtained for two types of layups employing Kevlar/epoxy and Boron/epoxy laminae. It is observed that for a given aspect ratio the rigidity of the skew plate increases with an increase in the skew angle. Further, for a specified deflection, the hybrid laminates turn out to be lighter.
Resumo:
Critical buckling loads of laminated fibre-reinforced plastic square panels have been obtained using the finite element method. Various boundary conditions, lay-up details, fibre orientations, cut-out sizes are considered. A 36 degrees of freedom triangular element, based on the classical lamination theory (CLT) has been used for the analysis. The performance of this element is validated by comparing results with some of those available in literature. New results have been given for several cases of boundary conditions for [0°/ ± 45°/90°]s laminates. The effect of fibre-orientation in the ply on the buckling loads has been investigated by considering [±?]6s laminates.
Resumo:
This paper presents a newly developed wavelet spectral finite element (WFSE) model to analyze wave propagation in anisotropic composite laminate with a transverse surface crack penetrating part-through the thickness. The WSFE formulation of the composite laminate, which is based on the first-order shear deformation theory, produces accurate and computationally efficient results for high frequency wave motion. Transverse crack is modeled in wavenumber-frequency domain by introducing bending flexibility of the plate along crack edge. Results for tone burst and impulse excitations show excellent agreement with conventional finite element analysis in Abaqus (R). Problems with multiple cracks are modeled by assembling a number of spectral elements with cracks in frequency-wavenumber domain. Results show partial reflection of the excited wave due to crack at time instances consistent with crack locations. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
A new higher order shear deformation theory of laminated composite plates is developed. The basic displacement variables in this theory are two partial normal displacements and two in-plane displacement parameters. The governing equations are presented in the form of four simultaneous partial differential equations. The shear deformation theories of Bhimareddy and Stevens, and of Reddy are special cases of this formulation. In their models, transverse shear strains will become zero at points in the plate where displacements are constrained to be zero such as those on fixed edges. This limitation has been overcome in the present formulation.
Resumo:
In this paper we examine the suitability of higher order shear deformation theory based on cubic inplane displacements and parabolic normal displacements, for stress analysis of laminated composite plates including the interlaminar stresses. An exact solution of a symmetrical four layered infinite strip under static loading has been worked out and the results obtained by the present theory are compared with the exact solution. The present theory provides very good estimates of the deflections, and the inplane stresses and strains. Nevertheless, direct estimates of strains and stresses do not display the required interlaminar stress continuity and strain discontinuity across the interlaminar surface. On the other hand, ‘statically equivalent stresses and strains’ do display the required interlaminar stress continuity and strain discontinuity and agree very closely with the exact solution.
Resumo:
Nonlinear finite element analysis is used for the estimation of damage due to low-velocity impact loading of laminated composite circular plates. The impact loading is treated as an equivalent static loading by assuming the impactor to be spherical and the contact to obey Hertzian law. The stresses in the laminate are calculated using a 48 d.o.f. laminated composite sector element. Subsequently, the Tsai-Wu criterion is used to detect the zones of failure and the maximum stress criterion is used to identify the mode of failure. Then the material properties of the laminate are degraded in the failed regions. The stress analysis is performed again using the degraded properties of the plies. The iterative process is repeated until no more failure is detected in the laminate. The problem of a typical T300/N5208 composite [45 degrees/0 degrees/-45 degrees/90 degrees](s) circular plate being impacted by a spherical impactor is solved and the results are compared with experimental and analytical results available in the literature. The method proposed and the computer code developed can handle symmetric, as well as unsymmetric, laminates. It can be easily extended to cover the impact of composite rectangular plates, shell panels and shells.
Resumo:
A 48 d.o.f., four-noded quadrilateral laminated composite shell finite element is particularised to a sector finite element and is used for the large deformation analysis of circular composite laminated plates. The strain-displacement relationships for the sector element are obtained by reducing those of the quadrilateral shell finite element by substituting proper values for the geometric parameters. Subsequently, the linear and tangent stiffness matrices are formulated using conventional methods. The Newton-Raphson method is employed as the nonlinear solution technique. The computer code developed is validated by solving an isotropic case for which results are available in the literature. The method is then applied to solve problems of cylindrically orthotropic circular plates. Some of the results of cylindrically orthotropic case are compared with those available in the literature. Subsequently, application is made to the case of laminated composite circular plates having different lay-up schemes. The computer code can handle symmetric/unsymmetric lay-up schemes. The large displacement analysis is useful in estimating the damage in composite plates caused by low-velocity impact.
Resumo:
A laminated composite plate model based on first order shear deformation theory is implemented using the finite element method.Matrix cracks are introduced into the finite element model by considering changes in the A, B and D matrices of composites. The effects of different boundary conditions, laminate types and ply angles on the behavior of composite plates with matrix cracks are studied.Finally, the effect of material property uncertainty, which is important for composite material on the composite plate, is investigated using Monte Carlo simulations. Probabilistic estimates of damage detection reliability in composite plates are made for static and dynamic measurements. It is found that the effect of uncertainty must be considered for accurate damage detection in composite structures. The estimates of variance obtained for observable system properties due to uncertainty can be used for developing more robust damage detection algorithms. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Mechanical joints in composites can be tailored to achieve improved performance and better life by appropriately selecting the laminate parameters. In order to gain the best advantage of this possibility of tailoring the laminate, it is necessary to understand the influence of laminate parameters on the behaviour of joints in composites. Most of the earlier studies in this direction were based on simplified assumptions regarding load transfer at the pin-plate interface and such studies were only carried out on orthotropic and quasi-isotropic laminates. In the present study, a more rigorous analysis is carried out to study pin joints in laminates with anisotropic properties. Two types of laminates with (0/ + ?4/90)s and (0/ ± ?2/90)s layups made out of graphite epoxy T300/5208 material system are considered. The analysis mainly concentrates on clearance fit in which the pin is of smaller diameter compared to the hole. The main aspect of the analysis of pin joints is the changing contact between the pin and the plate with increasing load levels. The analysis is carried out by an iterative finite element technique and a computationally efficient routine is developed for this purpose. Numerical studies indicate that the location and magnitude of the peak stresses along the hole boundary are functions of fibre angle and the overall anisotropic properties. It is also shown that the conventional assumption of cosine distribution for the contact pressure between pin and the plate in the analysis lead to underestimation of bearing failure load and overestimation of shear and tensile failure loads in typical (0/905)s cross-ply laminates.
Resumo:
The effects of tangential friction at pin—hole interfaces are appropriately modelled for the analysis of fasteners in large composite (orthotropic) plate loaded along its edges. The pin—hole contact could be of interference, clearance or neat fit. When the plate load is monotonically increased, interference fits give rise to receding contact, whereas clearance fits result in advancing contact. In either case, the changing contact situations lead to non-linear moving boundary value problems. The neat fit comes out as a special case in which the contact and separation regions are invariant with the applied load level and so the problem remains linear. The description of boundary conditions in the presence of tangential friction, will depend on whether the problem is one of advancing or receding contact, advancing contact presenting a special problem. A model is developed for the limiting case of a rigid pin and an ideally rough interface (infinitely large friction coefficient). The non-linearity resulting from the continuously varying proportions of contact and separation at the interface, is handled by an “Inverse Formulation” which was successfully applied earlier by the authors for smooth (zero friction) interfacial conditions. The additional difficulty introduced by advancing contact is handled by adopting a “Marching Solution”. The modelling and the procedure are illustrated in respect of symmetric plate load cases. Numerical results are presented bringing out the effects of interfacial friction and plate orthotropy on load-contact relations and plate stresses.
Resumo:
Instability of thin-walled open-section laminated composite beams is studied using the finite element method. A two-noded, 8 df per node thin-walled open-section laminated composite beam finite element has been used. The displacements of the element reference axis are expressed in terms of one-dimensional first order Hermite interpolation polynomials, and line member assumptions are invoked in formulation of the elastic stiffness matrix and geometric stiffness matrix. The nonlinear expressions for the strains occurring in thin-walled open-section beams, when subjected to axial, flexural and torsional loads, are incorporated in a general instability analysis. Several problems for which continuum solutions (exact/approximate) are possible have been solved in order to evaluate the performance of finite element. Next its applicability is demonstrated by predicting the buckling loads for the following problems of laminated composites: (i) two layer (45°/−45°) composite Z section cantilever beam and (ii) three layer (0°/45°/0°) composite Z section cantilever beam.
Resumo:
This article analyzes the effect of devising a new failure envelope by the combination of the most commonly used failure criteria for the composite laminates, on the design of composite structures. The failure criteria considered for the study are maximum stress and Tsai-Wu criteria. In addition to these popular phenomenological-based failure criteria, a micromechanics-based failure criterion called failure mechanism-based failure criterion is also considered. The failure envelopes obtained by these failure criteria are superimposed over one another and a new failure envelope is constructed based on the lowest absolute values of the strengths predicted by these failure criteria. Thus, the new failure envelope so obtained is named as most conservative failure envelope. A minimum weight design of composite laminates is performed using genetic algorithms. In addition to this, the effect of stacking sequence on the minimum weight of the laminate is also studied. Results are compared for the different failure envelopes and the conservative design is evaluated, with respect to the designs obtained by using only one failure criteria. The design approach is recommended for structures where composites are the key load-carrying members such as helicopter rotor blades.
Resumo:
Composites are finding increasing application in many advanced engineering fields like aerospace, marine engineering, hightech sports equipment, etc., due to their high specific strength and/or specific stiffness values. The use of composite components in complex situations like airplane wing root or locations of concentrated load transfer is limited due to the lack of complete understanding of their behaviour in the region of joints. Joints are unavoidable in the design and manufacture of complex structures. Pin joints are one of the most commonly used methods of connection. In regions of high stresses like airplane wing root joints interference fit pins are used to increase its fatigue life and thereby increase the reliability of the whole structure. The present contribution is a study on the behaviour of the interference fit pin in a composite plate subjected to both pull and push type of loads. The interference fit pin exhibits partial contact/separation under the loads and the contact region is a non-linear function of the load magnitude. This non-linear behaviour is studied by adopting the inverse technique and some new results are presented in this paper.
Resumo:
Lamb-wave-based damage detection methods using the triangulation technique are not suitable for handling structures with complex shapes and discontinuities as the parametric/analytical representation of these structures is very difficult. The geodesic concept is used along with the triangulation technique to overcome the above problem. The present work is based on the fundamental fact that a wave takes the minimum energy path to travel between two points on any multiply connected surface and this reduces to the shortest distance path or geodesic. The geodesics are computed on the meshed surface of the structure using the fast marching method. The wave response matrix of the given sensor configuration for the healthy and the damaged structure is obtained experimentally. The healthy and damage response matrices are compared and their difference gives the time information about the reflection of waves from the damage. A wavelet transform is used to extract the arrival time information of the wave scattered by the damage from the acquired Lamb wave signals. The computed geodesics and time information are used in the ellipse algorithm of triangulation formulation to locate the loci of possible damage location points for each actuator-sensor pair. The results obtained for all actuator-sensor pairs are combined and the intersection of multiple loci gives the damage location result. Experiments were conducted in aluminum and composite plate specimens to validate this method.
Resumo:
The design optimization of laminated composites using naturally inspired optimization techniques such as vector evaluated particle swarm optimization (VEPSO) and genetic algorithms (GA) are used in this paper. The design optimization of minimum weight of the laminated composite is evaluated using different failure criteria. The failure criteria considered are maximum stress (MS), Tsai-Wu (TW) and failure mechanism based (FMB) failure criteria. Minimum weight of the laminates are obtained for different failure criteria using VEPSO and GA for different combinations of loading. From the study it is evident that VEPSO and GA predict almost the same minimum weight of the laminate for the given loading. Comparison of minimum weight of the laminates by different failure criteria differ for some loading combinations. The comparison shows that FMBFC provide better results for all combinations of loading. (C) 2010 Elsevier Ltd. All rights reserved.