132 resultados para LEAN-BURN CONDITIONS

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Availability of producer gas engines at MW being limited necessitates to adapt engine from natural gas operation. The present work focus on the development of necessary kit for adapting a 12 cylinder lean burn turbo-charged natural gas engine rated at 900 kWe (Waukesha make VHP5904LTD) to operate on producer and set up an appropriate capacity biomass gasification system for grid linked power generation in Thailand. The overall plant configuration had fuel processing, drying, reactor, cooling and cleaning system, water treatment, engine generator and power evacuation. The overall project is designed for evacuation of 1.5 MWe power to the state grid and had 2 gasification system with the above configuration and 3 engines. Two gasification system each designed for about 1100 kg/hr of woody biomass was connected to the engine using a producer gas carburetor for the necessary Air to fuel ratio control. In the use of PG to fuel IC engines, it has been recognized that the engine response will differ as compared to the response with conventional fueled operation due to the differences in the thermo-physical properties of PG. On fuelling a conventional engine with PG, power de-rating can be expected due to the lower calorific value (LCV), lower adiabatic flame temperature (AFT) and the lower than unity product to reactant more ratio. Further the A/F ratio for producer gas is about 1/10th that of natural gas and requires a different carburetor for engine operation. The research involved in developing a carburetor for varying load conditions. The patented carburetor is based on area ratio control, consisting of a zero pressure regulator and a separate gas and air line along with a mixing zone. The 95 litre engine at 1000 rpm has an electrical efficiency of 33.5 % with a heat input of 2.62 MW. Each engine had two carburetors designed for producer gas flow each capable of handling about 1200 m3/hr in order to provide similar engine heat input at a lower conversion efficiency. Cold flow studies simulating the engine carburetion system results showed that the A/F was maintained in the range of 1.3 +/- 0.1 over the entire flow range. Initially, the gasification system was tested using woody biomass and the gas composition was found to be CO 15 +/- 1.5 % H-2 22 +/- 2% CH4 2.2 +/- 0.5 CO2 11.25 +/- 1.4 % and rest N-2, with the calorific value in the range of 5.0 MJ/kg. After initial trials on the engine to fine tune the control system and adjust various engine operating parameter a peak load of 800 kWe was achieved, while a stable operating conditions was found to be at 750 kWe which is nearly 85 % of the natural gas rating. The specific fuel consumption was found to be 0.9 kg of biomass per kWh.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work assesses the performance of small biogas-fuelled engines and explores high-efficiency strategies for power generation in the very low power range of less than 1000 W. Experiments were performed on a small 95-cc, single-cylinder, four-stroke spark-ignition engine operating on biogas. The engine was operated in two modes, i.e., `premixed' and `fuel injection' modes, using both single and dual spark plug configurations. Measurements of in-cylinder pressure, crank angle, brake power, air and fuel flow rates, and exhaust emissions were conducted. Cycle-to-cycle variations in engine in-cylinder pressure and power were also studied and assessed quantitatively for various loading conditions. Results suggest that biogas combustion can be fairly sensitive to the ignition strategies thereby affecting the power output and efficiency. Further, results indicate that continuous fuel injection shows superior performance compared to the premixed case especially at low loads owing to possible charge stratification in the engine cylinder. Overall, this study has demonstrated for the first time that a combination of technologies such as lean burn, fuel injection, and dual spark plug ignition can provide highly efficient and stable operation in a biogas-fuelled small S.I. engine, especially in the low power range of 450-1000W. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presence of software bloat in large flexible software systems can hurt energy efficiency. However, identifying and mitigating bloat is fairly effort intensive. To enable such efforts to be directed where there is a substantial potential for energy savings, we investigate the impact of bloat on power consumption under different situations. We conduct the first systematic experimental study of the joint power-performance implications of bloat across a range of hardware and software configurations on modern server platforms. The study employs controlled experiments to expose different effects of a common type of Java runtime bloat, excess temporary objects, in the context of the SPECPower_ssj2008 workload. We introduce the notion of equi-performance power reduction to characterize the impact, in addition to peak power comparisons. The results show a wide variation in energy savings from bloat reduction across these configurations. Energy efficiency benefits at peak performance tend to be most pronounced when bloat affects a performance bottleneck and non-bloated resources have low energy-proportionality. Equi-performance power savings are highest when bloated resources have a high degree of energy proportionality. We develop an analytical model that establishes a general relation between resource pressure caused by bloat and its energy efficiency impact under different conditions of resource bottlenecks and energy proportionality. Applying the model to different "what-if" scenarios, we predict the impact of bloat reduction and corroborate these predictions with empirical observations. Our work shows that the prevalent software-only view of bloat is inadequate for assessing its power-performance impact and instead provides a full systems approach for reasoning about its implications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heat shock promoters of mycobacteria are strong promoters that become rapidly upregulated during macrophage infection and thus serve as valuable candidates for expressing foreign antigens in recombinant BCG vaccine. In the present study, a new heat shock promoter controlling the expression of the groESL1 operon was identified and characterized. Mycobacterium tuberculosis groESL1 operon codes for the immunodominant 10 kDa (Rv3418c, GroES/Cpn10/Hsp10) and 60 kDa (Rv3417c, GroEL1/Cpn60.1/Hsp60) heat shock proteins. The basal promoter region was 115 bp, while enhanced activity was seen only with a 277-bp fragment. No promoter element was seen in the groES-groEL1 intergenic region. This operon codes for a bicistronic mRNA transcript as determined by reverse transcriptase-PCR and Northern blot analysis. Primer extension analysis identified two transcriptional start sites (TSSs) TSS1 (-236) and TSS2 (-171), out of which one (TSS2) was heat inducible. The groE promoter was more active than the groEL2 promoter in Mycobacterium smegmatis. Further, it was found to be differentially regulated under stress conditions, while the groEL2 promoter was constitutive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the use of tensor analysis and the method of singular surfaces, an infinite system of equations can be derived to study the propagation of curved shocks of arbitrary strength in gas dynamics. The first three of these have been explicitly given here. This system is further reduced to one involving scalars only. The choice of dependent variables in the infinite system is quite important, it leads to coefficients free from singularities for all values of the shock strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of a one-dimensional field (1) on the self-absorption characteristics and (2) when we have a finite numerical aperture for the objective lens that focuses the laser beam on the solid are considered here. Self-absorption, in particular its manifestation as an inner filter for the emitted signal, has been observed in luminescence experiments. Models for this effect exist and have been analyzed, but only in the absence of space charge. Using our previous results on minority carrier relaxation in the presence of a field, we obtain expressions incorporating inner filter effects. Focusing of a light beam on the sample, by an objective lens, results in a three-dimensional source and consequently a three-dimensional continuity equation to be solved for the minority carrier concentration. Assuming a one-dimensional electric field and employing Fourier-Bessel transforms, we recast the problem of carrier relaxation and solve the same via an identity that relates it to solutions obtained in the absence of focusing effects. The inner filter effect as well as focusing introduces new time scales in the problem of carrier relaxation. The interplay between the electric field and the parameters which characterize these effects and the consequent modulation of the intensity and time scales of carrier decay signals are analyzed and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exposure of rats to heat (39 +/- 1 degree C) decreased H2O2 generation in mitochondria of the liver, but not of the kidney or the heart. The effect was obtained with three substrates, succinate, glycerol 1-phosphate and choline, with a decrease to 50% in the first 2-3 days of exposure, and a further decrease on longer exposure. The dehydrogenase activity with only glycerol 1-phosphate decreased, which is indicative of the hypothyroid condition, whereas choline dehydrogenase activity remained unchanged and that of succinate dehydrogenase decreased on long exposure. The serum concentration of thyroxine decreased in heat-exposed rats. Thyroxine treatment of rats increased H2O2 generation. Hypothyroid conditions obtained by treatment with propylthiouracil or thyroidectomy caused a decrease in H2O2 generation and changes in dehydrogenase activities similar to those with heat exposure. Treatment of heat-exposed or thyroidectomized rats with thyroxine stimulated H2O2 generation by a mechanism apparently involving fresh protein synthesis. The results indicate that H2O2 generation in mitochondria of heat-exposed animals is determined by thyroid status.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this technical note, it is established that the unassignable polynomial defined for a not strongly connected decentralized control system is not equal to Davison's fixed polynomial. This leads to a "sufficient condition" for the equality of the unassignable polynomial and Davison's fixed polynomial for strongly connected systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. 1. An increase in the oxidation of succinate by hepatic mitochondria in rats exposed to hypoxia (O2-N2; 1:9, v/v) or hypobaria (0.5 atm) was observed which appears to be due to modification of the activity of the rate-limiting succinate dehydrogenase [succinate: (acceptor) oxidoreductase, EC 1.3.99.1].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salt-fog tests as per International Electrotechnical Commission (IEC) recommendations were conducted on stationtype insulators with large leakage lengths. Later, tests were conducted to simulate natural conditions. From these tests, it was understood that the pollution flashover would occur because of nonuniform pollution layers causing nonuniform voltage distribution during a natural drying-up period. The leakage current during test conditions was very small and the evidence was that the leakage current did not play any significant role in causing flashovers. In the light of the experimental results, some modification of the test procedure is suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical solution of the heat transfer problem with viscous dissipation for non-Newtonian fluids with power-law model in the thermal entrance region of a circular pipe and two parallel plates under constant heat flux conditions is obtained using eigenvalue approach by suitably replacing one of the boundary conditions by total energy balance equation. Analytical expressions for the wall and the bulk temperatures and the local Nusselt number are presented. The results are in close agreement with those obtained by implicit finite-difference scheme. It is found that the role of viscous dissipation on heat transfer is completely different for heating and cooling conditions at the wall. The results for the case of cooling at the wall are of interest in the design of the oil pipe line.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental system was developed for assessing the role ofhetgenes in heterokaryon formation inNeurosporain nature. Burned sugar cane segments planted in soil were infected using a mixture of mutant ascospores of two genotypes.Neurosporaramified in the cane and erupted as distinct pustules of conidia. When ascospores carried identicalhetalleles, the (macro) conidial pustules which formed were heterokaryotic. On the other hand, when ascospores carried dissimilarhetalleles, the pustules were homokaryotic. These results showed that stable heterokaryons between compatible strains can form in nature. When two strains are growing together on a natural substrate, heterozygosity athetloci serves to maintain their individuality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wear of dies is a serious problem in the forging industry. The materials used for the dies are generally expensive steel alloys and the dies require costly heat treatment and surface finishing operations. Degeneration of the die profile implies rejection of forged components and necessitates resinking or replacement of the die. Measures which reduce wear of the die can therefore aid in the reduction of production costs. The work reported here is the first phase of a study of the causes of die wear in forging production where the batch size is small and the machine employed is a light hammer. This is a problem characteristic of the medium and small scale area of the forging industry where the cost of dies is a significant proportion of the total capital investment. For the same energy input and under unlubricated conditions, die wear has been found to be sensitive to forging temperature; in cold forging the yield strength of the die material is the prime factor governing the degeneration of the die profile, whilst in hot forging the wear resistance of the die material is the main factor which determines the rate of die wear. At an intermediate temperature, such as that characteristic of warm forging, the die wear is found to be less than that in both cold and hot forging. This preliminary study therefore points to the fact that the forging temperature must be taken into account in the selection of die material. Further, the forging industry must take serious note of the warm forging process, as it not only provides good surface finish, as claimed by many authors, but also has an inherent tendency to minimize die wear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of surface aeration systems, among other key design variables, depends upon the geometric parameters of the aeration tank. Efficient performance and scale up or scale down of the experimental results of an aeration ystem requires optimal geometric conditions. Optimal conditions refer to the conditions of maximum oxygen transfer rate, which assists in scaling up or down the system for ommercial utilization. The present work investigates the effect of an aeration tank's shape (unbaffled circular, baffled circular and unbaffled square) on oxygen transfer. Present results demonstrate that there is no effect of shape on the optimal geometric conditions for rotor position and rotor dimensions. This experimentation shows that circular tanks (baffled or unbaffled) do not have optimal geometric conditions for liquid transfer, whereas the square cross-section tank shows a unique geometric shape to optimize oxygen transfer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of two boundary conditions generally assumed in solutions of the dynamo equation is related to the disappearance of the azimuthal field at the boundary. Parker (1984) points out that for the realization of this condition the field must escape freely through the surface. Escape requires that the field be detached from the gas in which it is embedded. In the case of the sun, this can be accomplished only through reconnection in the tenuous gas above the visible surface. Parker concludes that the observed magnetic activity on the solar surface permits at most three percent of the emerging flux to escape. He arrives at the conclusion that, instead of B(phi) = 0, the partial derivative of B(phi) to r is equal to zero. The present investigation is concerned with the effect of changing the boundary condition according to Parker's conclusion. Implications for the solar convection zone are discussed.