13 resultados para Kuramoto-Sivashinsky-Korteweg-de Vries
em Indian Institute of Science - Bangalore - Índia
Resumo:
The solitary-wavelike solution of the generalized Korteweg-de Vries equation with mixed nonlinearity is obtained. Two asymptotic cases of the solution have been discussed and solitary wave solutions have been derived.
Resumo:
The theoretical analysis, based on the perturbation technique, of ion-acoustic waves in the vicinity of a Korteweg-de Vries (K-dV) equation derived in a plasma with some negative ions has been made. The investigation shows that the negative ions in plasma with isothermal electrons introduced a critical concentration at which the ion-acoustic wave plays an important role of wave-breaking and forming a precursor while the plasma with non-isothermal electrons has no such singular behaviour of the wave. These two distinct features of ion waves lead to an overall different approach of present study of ion-waves. A distinct feature of non-uniform transition from the nonisothermal case to isothermal case has been shown. Few particular plasma models have been chosen to show the characteristics behaviour of the ion-waves existing in different cases
Resumo:
Abstract is not available.
Resumo:
In this paper, we present the solutions of 1-D and 2-D non-linear partial differential equations with initial conditions. We approach the solutions in time domain using two methods. We first solve the equations using Fourier spectral approximation in the spatial domain and secondly we compare the results with the approximation in the spatial domain using orthogonal functions such as Legendre or Chebyshev polynomials as their basis functions. The advantages and the applicability of the two different methods for different types of problems are brought out by considering 1-D and 2-D nonlinear partial differential equations namely the Korteweg-de-Vries and nonlinear Schrodinger equation with different potential function. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The solitary-wavelike solution of the generalized Korteweg-de Vries equation with mixed nonlinearity is obtained. Two asymptotic cases of the solution have been discussed and solitary wave solutions have been derived. ©1974 American Institute of Physics.
Resumo:
By using a perturbation technique, the Korteweg-de Vries equation is derived for a mixture of warm-ion fluid and hot, isothermal electrons. Stationary solutions are obtained for this equation and are compared with the corresponding solutions for a mixture consisting of cold-ion fluid and hot, isothermal electrons.
Resumo:
The authors derive the Korteweg-de Vries equation in a multicomponent plasma that includes any number of positive and negative ions. The solitary wave solutions are also found explicitly for the case of isothermal and non-isothermal electrons.
Resumo:
Initial-value problems for the generalized Burgers equation (GBE) ut+u betaux+lambdaualpha =(delta/2)uxx are discussed for the single hump type of initial data both continuous and discontinuous. The numerical solution is carried to the self-similar ``intermediate asymptotic'' regime when the solution is given analytically by the self-similar form. The nonlinear (transformed) ordinary differential equations (ODE's) describing the self-similar form are generalizations of a class discussed by Euler and Painlevé and quoted by Kamke. These ODE's are new, and it is postulated that they characterize GBE's in the same manner as the Painlev equations categorize the Kortweg-de Vries (KdV) type. A connection problem for some related ODE's satisfying proper asymptotic conditions at x=±[infinity], is solved. The range of amplitude parameter is found for which the solution of the connection problem exists. The other solutions of the above GBE, which display several interesting features such as peaking, breaking, and a long shelf on the left for negative values of the damping coefficient lambda, are also discussed. The results are compared with those holding for the modified KdV equation with damping. Journal of Mathematical Physics is copyrighted by The American Institute of Physics.
Resumo:
Using a perturbation technique, we derive Modified Korteweg—de Vries (MKdV) equations for a mixture of warm-ion fluid (γ i = 3) and hot and non-isothermal electrons (γ e> 1), (i) when deviations from isothermality are finite, and (ii) when deviations from isothermality are small. We obtain stationary solutions for these equations, and compare them with the corresponding solutions for a mixture of warm-ion fluid (γ i = 3) and hot, isothermal electrons (γ i = 1).
Resumo:
It was proposed earlier [P. L. Sachdev, K. R. C. Nair, and V. G. Tikekar, J. Math. Phys. 27, 1506 (1986); P. L. Sachdev and K. R. C. Nair, ibid. 28, 977 (1987)] that the Euler–Painlevé equations y(d2y/dη2)+a(dy/dη)2 +f(η)y(dy/dη)+g(η)y2+b(dy/dη) +c=0 represent generalized Burgers equations (GBE’s) in the same way as Painlevé equations represent the Korteweg–de Vries type of equations. The earlier studies were carried out in the context of GBE’s with damping and those with spherical and cylindrical symmetry. In the present paper, GBE’s with variable coefficients of viscosity and those with inhomogeneous terms are considered for their possible connection to Euler–Painlevé equations. It is found that the Euler–Painlevé equation, which represents the GBE ut+uβux=(δ/2)g(t)uxx, g(t)=(1+t)n, β>0, has solutions, which either decay or oscillate at η=±∞, only when −1
Resumo:
Unsteady propagation of spherical flames, both inward and outward, are studied numerically extensively for single-step reaction and for different Lewis numbers of fuel/oxidizer. The dependence of flame speed ratio (s) and flame temperature ratio are obtained for a range of Lewis numbers and stretch (kappa) values. These results of s versus kappa show that the asymptotic theory by Frankel and Sivashinsky is reasonable for outward propagation. Other theories are unsatisfactory both quantitatively and qualitatively. The stretch effects are much higher for negative stretch than for positive stretch, as also seen in the theory of Frankel and Sivashinsky. The linearity of the flame speed ratio vs stretch relationship is restricted to nondimensional stretch of +/-0.1. It is shown further that the results from cylindrical flames are identical to the spherical flame on flame speed ratio versus nondimensional stretch plot thus confirming the generality of the concept of stretch. The comparison of the variation of (ds/dkappa)kappa=0 with beta(Lc - 1) show an offset between the computed and the asymptotic results of Matalon and Matkowsky. The departure of negative stretch results from this variation is significant. Several earlier experimental results are analysed and set out in the form of s versus kappa plot. Comparison of the results with experiments seem reasonable for negative stretch. The results for positive stretch are satisfactory qualitatively for a few cases. For rich propane-air, there are qualitative differences pointing to the need for full chemistry calculations in the extraction of stretch effects.
Resumo:
By using the perturbation technique, a Kortewege-de-Vries (K-dV) equation for a multicomponent plasma with negative ions and isothermal electrons has been derived. We have discussed the stationary solutions of K-dV equation and it has shown that in the presece of multiple ions, the amplitude of solitons exhibits interesting behaviour, especiallY when the negative ions are present.
Resumo:
Energy use in developing countries is heterogeneous across households. Present day global energy models are mostly too aggregate to account for this heterogeneity. Here, a bottom-up model for residential energy use that starts from key dynamic concepts on energy use in developing countries is presented and applied to India. Energy use and fuel choice is determined for five end-use functions (cooking, water heating, space heating, lighting and appliances) and for five different income quintiles in rural and urban areas. The paper specifically explores the consequences of different assumptions for income distribution and rural electrification on residential sector energy use and CO(2) emissions, finding that results are clearly sensitive to variations in these parameters. As a result of population and economic growth, total Indian residential energy use is expected to increase by around 65-75% in 2050 compared to 2005, but residential carbon emissions may increase by up to 9-10 times the 2005 level. While a more equal income distribution and rural electrification enhance the transition to commercial fuels and reduce poverty, there is a trade-off in terms of higher CO(2) emissions via increased electricity use. (C) 2011 Elsevier Ltd. All rights reserved.