107 resultados para Kikuchi approximations

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Error estimates for the error reproducing kernel method (ERKM) are provided. The ERKM is a mesh-free functional approximation scheme [A. Shaw, D. Roy, A NURBS-based error reproducing kernel method with applications in solid mechanics, Computational Mechanics (2006), to appear (available online)], wherein a targeted function and its derivatives are first approximated via non-uniform rational B-splines (NURBS) basis function. Errors in the NURBS approximation are then reproduced via a family of non-NURBS basis functions, constructed using a polynomial reproduction condition, and added to the NURBS approximation of the function obtained in the first step. In addition to the derivation of error estimates, convergence studies are undertaken for a couple of test boundary value problems with known exact solutions. The ERKM is next applied to a one-dimensional Burgers equation where, time evolution leads to a breakdown of the continuous solution and the appearance of a shock. Many available mesh-free schemes appear to be unable to capture this shock without numerical instability. However, given that any desired order of continuity is achievable through NURBS approximations, the ERKM can even accurately approximate functions with discontinuous derivatives. Moreover, due to the variation diminishing property of NURBS, it has advantages in representing sharp changes in gradients. This paper is focused on demonstrating this ability of ERKM via some numerical examples. Comparisons of some of the results with those via the standard form of the reproducing kernel particle method (RKPM) demonstrate the relative numerical advantages and accuracy of the ERKM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents two approximate analytical expressions for nonlinear electric fields in the principal direction in axially symmetric (3D) and two dimensional (2D) ion trap mass analysers with apertures (holes in case of 3D traps and slits in case of 2D traps) on the electrodes. Considered together (3D and 2D), we present composite approximations for the principal unidirectional nonlinear electric fields in these ion traps. The composite electric field E has the form E = E-noaperture + E-aperture. where E-noaperture is the field within an imagined trap which is identical to the practical trap except that the apertures are missing and E-aperture is the field contribution due to apertures on the two trap electrodes. The field along the principal axis, of the trap can in this way be well approximated for any aperture that is not too large. To derive E-aperture. classical results of electrostatics have been extended to electrodes with finite thickness and different aperture shapes.E-noaperture is a modified truncated multipole expansion for the imagined trap with no aperture. The first several terms in the multipole expansion are in principle exact(though numerically determined using the BEM), while the last term is chosen to match the field at the electrode. This expansion, once Computed, works with any aperture in the practical trap. The composite field approximation for axially symmetric (3D) traps is checked for three geometries: the Paul trap, the cylindrical ion trap (CIT) and an arbitrary other trap. The approximation for 2D traps is verified using two geometries: the linear ion trap (LIT) and the rectilinear ion trap (RIT). In each case, for two aperture sizes (10% and 50% of the trap dimension), highly satisfactory fits are obtained. These composite approximations may be used in more detailed nonlinear ion dynamics Studies than have been hitherto attempted. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent work (Int. J. Mass Spec., vol. 282, pp. 112–122) we have considered the effect of apertures on the fields inside rf traps at points on the trap axis. We now complement and complete that work by considering off-axis fields in axially symmetric (referred to as “3D”) and in two dimensional (“2D”) ion traps whose electrodes have apertures, i.e., holes in 3D and slits in 2D. Our approximation has two parts. The first, EnoAperture, is the field obtained numerically for the trap under study with apertures artificially closed. We have used the boundary element method (BEM) for obtaining this field. The second part, EdueToAperture, is an analytical expression for the field contribution of the aperture. In EdueToAperture, aperture size is a free parameter. A key element in our approximation is the electrostatic field near an infinite thin plate with an aperture, and with different constant-valued far field intensities on either side. Compact expressions for this field can be found using separation of variables, wherein the choice of coordinate system is crucial. This field is, in turn, used four times within our trap-specific approximation. The off-axis field expressions for the 3D geometries were tested on the quadrupole ion trap (QIT) and the cylindrical ion trap (CIT), and the corresponding expressions for the 2D geometries were tested on the linear ion trap (LIT) and the rectilinear ion trap (RIT). For each geometry, we have considered apertures which are 10%, 30%, and 50% of the trap dimension. We have found that our analytical correction term EdueToAperture, though based on a classical small-aperture approximation, gives good results even for relatively large apertures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fractional-order derivatives appear in various engineering applications including models for viscoelastic damping. Damping behavior of materials, if modeled using linear, constant coefficient differential equations, cannot include the long memory that fractional-order derivatives require. However, sufficiently great rnicrostructural disorder can lead, statistically, to macroscopic behavior well approximated by fractional order derivatives. The idea has appeared in the physics literature, but may interest an engineering audience. This idea in turn leads to an infinite-dimensional system without memory; a routine Galerkin projection on that infinite-dimensional system leads to a finite dimensional system of ordinary differential equations (ODEs) (integer order) that matches the fractional-order behavior over user-specifiable, but finite, frequency ranges. For extreme frequencies (small or large), the approximation is poor. This is unavoidable, and users interested in such extremes or in the fundamental aspects of true fractional derivatives must take note of it. However, mismatch in extreme frequencies outside the range of interest for a particular model of a real material may have little engineering impact.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we shall study a fractional order functional integral equation. In the first part of the paper, we proved the existence and uniqueness of mile and global solutions in a Banach space. In the second part of the paper, we used the analytic semigroups theory oflinear operators and the fixed point method to establish the existence, uniqueness and convergence of approximate solutions of the given problem in a separable Hilbert space. We also proved the existence and convergence of Faedo-Galerkin approximate solution to the given problem. Finally, we give an example.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stability results are given for a class of feedback systems arising from the regulation of time-varying discrete-time systems using optimal infinite-horizon and moving-horizon feedback laws. The class is characterized by joint constraints on the state and the control, a general nonlinear cost function and nonlinear equations of motion possessing two special properties. It is shown that weak conditions on the cost function and the constraints are sufficient to guarantee uniform asymptotic stability of both the optimal infinite-horizon and movinghorizon feedback systems. The infinite-horizon cost associated with the moving-horizon feedback law approaches the optimal infinite-horizon cost as the moving horizon is extended.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, Brownian networks have emerged as an effective stochastic model to approximate multiclass queueing networks with dynamic scheduling capability, under conditions of balanced heavy loading. This paper is a tutorial introduction to dynamic scheduling in manufacturing systems using Brownian networks. The article starts with motivational examples. It then provides a review of relevant weak convergence concepts, followed by a description of the limiting behaviour of queueing systems under heavy traffic. The Brownian approximation procedure is discussed in detail and generic case studies are provided to illustrate the procedure and demonstrate its effectiveness. This paper places emphasis only on the results and aspires to provide the reader with an up-to-date understanding of dynamic scheduling based on Brownian approximations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using the strain smoothing technique proposed by Chen et al. (Comput. Mech. 2000; 25: 137-156) for meshless methods in the context of the finite element method (FEM), Liu et al. (Comput. Mech. 2007; 39(6): 859-877) developed the Smoothed FEM (SFEM). Although the SFEM is not yet well understood mathematically, numerical experiments point to potentially useful features of this particularly simple modification of the FEM. To date, the SFEM has only been investigated for bilinear and Wachspress approximations and is limited to linear reproducing conditions. The goal of this paper is to extend the strain smoothing to higher order elements and to investigate numerically in which condition strain smoothing is beneficial to accuracy and convergence of enriched finite element approximations. We focus on three widely used enrichment schemes, namely: (a) weak discontinuities; (b) strong discontinuities; (c) near-tip linear elastic fracture mechanics functions. The main conclusion is that strain smoothing in enriched approximation is only beneficial when the enrichment functions are polynomial (cases (a) and (b)), but that non-polynomial enrichment of type (c) lead to inferior methods compared to the standard enriched FEM (e.g. XFEM). Copyright (C) 2011 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we give a generalization of a result by Borkar and Meyn (2000) 1], on the stability and convergence of synchronous-update stochastic approximation algorithms, to the case of asynchronous stochastic approximations with delays. We then describe an interesting application of the result to asynchronous distributed temporal difference (TD) learning with function approximation and delays. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diffusion terms in the mean velocity and temperature equations of turbulent flow are analysed to decide when variations of fluid properties can produce appreciable errors. # A theoretical demonstration is given that in the mean-flow continuity equation for a gas the error in assuming constant density is small if the flow is turbulent, even when the temperature variations are large. # Separate discussion is given of the case of local heat sources in turbulence, as large errors can occur there.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The eigenvalues and eigenfunctions corresponding to the three-dimensional equations for the linear elastic equilibrium of a clamped plate of thickness 2ϵ, are shown to converge (in a specific sense) to the eigenvalues and eigenfunctions of the well-known two-dimensional biharmonic operator of plate theory, as ϵ approaches zero. In the process, it is found in particular that the displacements and stresses are indeed of the specific forms usually assumed a priori in the literature. It is also shown that the limit eigenvalues and eigenfunctions can be equivalently characterized as the leading terms in an asymptotic expansion of the three-dimensional solutions, in terms of powers of ϵ. The method presented here applies equally well to the stationary problem of linear plate theory, as shown elsewhere by P. Destuynder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The governing differential equation of the rotating beam reduces to that of a stiff string when the centrifugal force is assumed as constant. The solution of the static homogeneous part of this equation is enhanced with a polynomial term and used in the Rayleighs method. Numerical experiments show better agreement with converged finite element solutions compared to polynomials. Using this as an estimate for the first mode shape, higher mode shape approximations are obtained using Gram-Schmidt orthogonalization. Estimates for the first five natural frequencies of uniform and tapered beams are obtained accurately using a very low order Rayleigh-Ritz approximation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a single server queue with the interarrival times and the service times forming a regenerative sequence. This traffic class includes the standard models: lid, periodic, Markov modulated (e.g., BMAP model of Lucantoni [18]) and their superpositions. This class also includes the recently proposed traffic models in high speed networks, exhibiting long range dependence. Under minimal conditions we obtain the rates of convergence to stationary distributions, finiteness of stationary moments, various functional limit theorems and the continuity of stationary distributions and moments. We use the continuity results to obtain approximations for stationary distributions and moments of an MMPP/GI/1 queue where the modulating chain has a countable state space. We extend all our results to feedforward networks where the external arrivals to each queue can be regenerative. In the end we show that the output process of a leaky bucket is regenerative if the input process is and hence our results extend to a queue with arrivals controlled by a leaky bucket.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The unsteady free convection flow in the stagnation-point region of a heated three-dimensional body placed in an ambient fluid is studied under boundary layer approximations. We have considered the case where there is an initial steady state that is perturbed by a step-change in the wall temperature. The non-linear coupled partial differential equations governing the free convection flow are solved numerically using a finite difference scheme. The presented results show the temporal development of the momentum and thermal boundary layer characteristics.