89 resultados para Jeffcott rotor
em Indian Institute of Science - Bangalore - Índia
Resumo:
A finite-state wake model is used to investigate aeromechanical stability of hingeless-rotor helicopters in the ground-contact, hover and trimmed-night conditions. The investigation covers three items: (1) the convergence of the damping with increasing number of wake harmonics for the lag regressing, and body pitch and roll modes; (2) a parametric study of the damping over a range of thrust level, advance ratio and number of blades; and (3) correlations, primarily with the damping and frequency measurements of these lag and body modes. The convergence and parametric studies are conducted in the hover and trimmed-flight conditions; they include predictions from the widely used dynamic inflow model. The correlations are conducted in the ground-contact conditions and include predictions from the dynamic inflow and vortex models; recently, this vortex model is proposed for the axial-flight conditions and is used to investigate the coupled free vibrations of rotor flapping and body modes. The convergence and parametric studies show that a finite-state wake model that goes well beyond the dynamic inflow model is required for fairly converged damping, Moreover, the correlations from the finite-state wake, dynamic inflow and vortex models are generally satisfactory.
Resumo:
In this paper we have used the method of characteristics developed for two dimensional unsteady flow problems to study a simplified axial turbine problem. The system consists of two sets of blades —the guiding vanes which are fixed and the rotor blades which move perpendicular to these vanes. The initial undisturbed constant flow in the system is perturbed by introducing a small velocity normal to the rotor blades to simulate a slight constant inclination. The resulting perturbed flow is periodic after the first three cycles. We have studied the perturbed density distribution throughout the system during a period.
Resumo:
The influence of nonstationary turbulence on rotor and propeller systems is discussed. The review is made from a common analytical basis of nonstationary approach, with emphasis on concepts rather than on details. The necessity of such an approach and its feasibility for predicting a complete set of gust and response statistics together with correlations with somewhat limited test data are appraised.
Resumo:
Gravity critical speeds of rotors have hitherto been studied using linear analysis, and ascribed to rotor stiffness asymmetry. Here, we study an idealized asymmetric nonlinear overhung rotor model of Crandall and Brosens, spinning close to its gravity critical speed.Nonlinearities arise from finite displacements, and the rotor's staticlateral deflection under gravity is taken as small. Assuming small asymmetry and damping, slow modulations of whirl amplitudes are studied using the method of multiple scales. Inertia asymmetry appears only at second order. More interestingly, even without stiffness asymmetry, the gravity-induced resonance survives through geometric nonlinearities. The gravity resonant forcing does not influence the resonant mode at leading order, unlike the typical resonant oscillations. Nevertheless,the usual phenomena of resonances, namely saddle-node bifurcations, jump phenomena and hysteresis, are all observed. An unanticipated periodic solution branch is found. In the three-dimensional space oftwo modal coefficients and a detuning parameter, the full set of periodic solutions is found to be an imperfect version of three mutually intersecting curves: a straight line,a parabola and an ellipse.
Resumo:
A health-monitoring and life-estimation strategy for composite rotor blades is developed in this work. The cross-sectional stiffness reduction obtained by physics-based models is expressed as a function of the life of the structure using a recent phenomenological damage model. This stiffness reduction is further used to study the behavior of measurable system parameters such as blade deflections, loads, and strains of a composite rotor blade in static analysis and forward flight. The simulated measurements are obtained using an aeroelastic analysis of the composite rotor blade based on the finite element in space and time with physics-based damage modes that are then linked to the life consumption of the blade. The model-based measurements are contaminated with noise to simulate real data. Genetic fuzzy systems are developed for global online prediction of physical damage and life consumption using displacement- and force-based measurement deviations between damaged and undamaged conditions. Furthermore, local online prediction of physical damage and life consumption is done using strains measured along the blade length. It is observed that the life consumption in the matrix-cracking zone is about 12-15% and life consumption in debonding/delamination zone is about 45-55% of the total life of the blade. It is also observed that the success rate of the genetic fuzzy systems depends upon the number of measurements, type of measurements and training, and the testing noise level. The genetic fuzzy systems work quite well with noisy data and are recommended for online structural health monitoring of composite helicopter rotor blades.
Resumo:
This paper investigates the feasibility of an on-line damage detection capability for helicopter main rotor blades made of composite material. Damage modeled in the composite is matrix cracking. A box-beam with stiffness properties similar to a hingeless rotor blade is designed using genetic algorithm for the typical [+/-theta(m)/90(n)](s) family of composites. The effect of matrix cracks is included in an analytical model of composite box-beam. An aeroelastic analysis of the helicopter rotor based on finite elements in space and time is used to study the effects of matrix cracking in the rotor blade in forward flight. For global fault detection, rotating frequencies, tip bending and torsion response, and blade root loads are studied. It is observed that the effect of matrix cracking on lag bending and elastic twist deflection at the blade tip and blade root yawing moment is significant and these parameters can be monitored for online health monitoring. For implementation of local fault detection technique, the effect on axial and shear strain, for matrix cracks in the whole blade as well as matrix cracks occurring locally is studied. It is observed that using strain measurement along the blade it is possible to locate the matrix cracks as well as to predict density of matrix cracks. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Purpose - This paper aims to validate a comprehensive aeroelastic analysis for a helicopter rotor with the higher harmonic control aeroacoustic rotor test (HART-II) wind tunnel test data. Design/methodology/approach - Aeroelastic analysis of helicopter rotor with elastic blades based on finite element method in space and time and capable of considering higher harmonic control inputs is carried out. Moderate deflection and coriolis nonlinearities are included in the analysis. The rotor aerodynamics are represented using free wake and unsteady aerodynamic models. Findings - Good correlation between analysis and HART-II wind tunnel test data is obtained for blade natural frequencies across a range of rotating speeds. The basic physics of the blade mode shapes are also well captured. In particular, the fundamental flap, lag and torsion modes compare very well. The blade response compares well with HART-II result and other high-fidelity aeroelastic code predictions for flap and torsion mode. For the lead-lag response, the present analysis prediction is somewhat better than other aeroelastic analyses. Research limitations/implications - Predicted blade response trend with higher harmonic pitch control agreed well with the wind tunnel test data, but usually contained a constant offset in the mean values of lead-lag and elastic torsion response. Improvements in the modeling of the aerodynamic environment around the rotor can help reduce this gap between the experimental and numerical results. Practical implications - Correlation of predicted aeroelastic response with wind tunnel test data is a vital step towards validating any helicopter aeroelastic analysis. Such efforts lend confidence in using the numerical analysis to understand the actual physical behavior of the helicopter system. Also, validated numerical analyses can take the place of time-consuming and expensive wind tunnel tests during the initial stage of the design process. Originality/value - While the basic physics appears to be well captured by the aeroelastic analysis, there is need for improvement in the aerodynamic modeling which appears to be the source of the gap between numerical predictions and HART-II wind tunnel experiments.
Resumo:
This study aims to determine optimal locations of dual trailing-edge flaps and blade stiffness to achieve minimum hub vibration levels in a helicopter, with low penalty in terms of required trailing-edge flap control power. An aeroelastic analysis based on finite elements in space and time is used in conjunction with an optimal control algorithm to determine the flap time history for vibration minimization. Using the aeroelastic analysis, it is found that the objective functions are highly nonlinear and polynomial response surface approximations cannot describe the objectives adequately. A neural network is then used for approximating the objective functions for optimization. Pareto-optimal points minimizing both helicopter vibration and flap power ale obtained using the response surface and neural network metamodels. The two metamodels give useful improved designs resulting in about 27% reduction in hub vibration and about 45% reduction in flap power. However, the design obtained using response surface is less sensitive to small perturbations in the design variables.
Resumo:
The effect of uncertainty in composite material properties on the aeroelastic response, vibratory loads, and stability of a hingeless helicopter rotor is investigated. The uncertainty impact on rotating natural frequencies of the blade is studied with Monte Carlo simulations and first-order reliability methods. The stochastic aeroelastic analyses in hover and forward flight are carried out with Monte Carlo simulations. The flap, lag, and torsion responses show considerable scatter from their baseline values, and the uncertainty impact varies with the azimuth angle. Furthermore, the blade response shows finite probability of resonance-type conditions caused by modal frequencies approaching multiples of the rotor speed. The 4/rev vibratory forces show large deviations from their baseline values. The lag mode damping shows considerable scatter due to uncertain material properties with an almost 40% probability of instability in hover.
Resumo:
This paper proposes a sensorless vector control scheme for general-purpose induction motor drives using the current error space phasor-based hysteresis controller. In this paper, a new technique for sensorless operation is developed to estimate rotor voltage and hence rotor flux position using the stator current error during zero-voltage space vectors. It gives a comparable performance with the vector control drive using sensors especially at a very low speed of operation (less than 1 Hz). Since no voltage sensing is made, the dead-time effect and loss of accuracy in voltage sensing at low speed are avoided here, with the inherent advantages of the current error space phasor-based hysteresis controller. However, appropriate device on-state drops are compensated to achieve a steady-state operation up to less than 1 Hz. Moreover, using a parabolic boundary for current error, the switching frequency of the inverter can be maintained constant for the entire operating speed range. Simple sigma L-s estimation is proposed, and the parameter sensitivity of the control scheme to changes in stator resistance, R-s is also investigated in this paper. Extensive experimental results are shown at speeds less than 1 Hz to verify the proposed concept. The same control scheme is further extended from less than 1 Hz to rated 50 Hz six-step operation of the inverter. Here, the magnetic saturation is ignored in the control scheme.
Resumo:
A rotor-body system with blades interconnected through viscoelastic elements is analyzed for response, loads, and stability in propulsive trim in ground contact and under forward-flight conditions, A conceptual model of a multibladed rotor with rigid flap and lag motions, and the fuselage with rigid pitch and roll motions is considered, Although the interconnecting elements are placed in the in-plane direction, considerable coupling between the flap-lag motions of the blades can occur in certain ranges of interblade element stiffness, Interblade coupling can yield significant changes in the response, loads, and stability that are dependent on the interblade element and rotor-body parameters, Ground resonance stability investigations show that by tuning the interblade element stiffness, the ground resonance instability problem can be reduced or eliminated, The interblade elements with damping and stiffness provide an effective method to overcome the problems of ground and air resonance.
Resumo:
A fuzzy logic system is developed for helicopter rotor system fault isolation. Inputs to the fuzzy logic system are measurement deviations of blade bending and torsion response and vibration from a "good" undamaged helicopter rotor. The rotor system measurements used are flap and lag bending tip deflections, elastic twist deflection at the tip, and three forces and three moments at the rotor hub. The fuzzy logic system uses rules developed from an aeroelastic model of the helicopter rotor with implanted faults to isolate the fault while accounting for uncertainty in the measurements. The faults modeled include moisture absorption, loss of trim mass, damaged lag damper, damaged pitch control system, misadjusted pitch link, and damaged flap. Tests with simulated data show that the fuzzy system isolates rotor system faults with an accuracy of about 90-100%. Furthermore, the fuzzy system is robust and gives excellent results, even when some measurements are not available. A rule-based expert system based on similar rules from the aeroelastic model performs much more poorly than the fuzzy system in the presence of high levels of uncertainty.
Resumo:
An aeroelastic analysis based on finite elements in space and time is used to model the helicopter rotor in forward flight. The rotor blade is represented as an elastic cantilever beam undergoing flap and lag bending, elastic torsion and axial deformations. The objective of the improved design is to reduce vibratory loads at the rotor hub that are the main source of helicopter vibration. Constraints are imposed on aeroelastic stability, and move limits are imposed on the blade elastic stiffness design variables. Using the aeroelastic analysis, response surface approximations are constructed for the objective function (vibratory hub loads). It is found that second order polynomial response surfaces constructed using the central composite design of the theory of design of experiments adequately represents the aeroelastic model in the vicinity of the baseline design. Optimization results show a reduction in the objective function of about 30 per cent. A key accomplishment of this paper is the decoupling of the analysis problem and the optimization problems using response surface methods, which should encourage the use of optimization methods by the helicopter industry. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
In this paper, a wind energy conversion system (WECS) using grid-connected wound rotor induction machine controlled from the rotor side is compared with both fixed speed and variable speed systems using cage rotor induction machine. The comparison is done on the basis of (I) major hardware components required, (II) operating region, and (III) energy output due to a defined wind function using the characteristics of a practical wind turbine. Although a fixed speed system is more simple and reliable, it severely limits the energy output of a wind turbine. In case of variable speed systems, comparison shows that using a wound rotor induction machine of similar rating can significantly enhance energy capture. This comes about due to the ability to operate with rated torque even at supersynchronous speeds; power is then generated out of the rotor as well as the stator. Moreover, with rotor side control, the voltage rating of the power devices and dc bus capacitor bank is reduced. The size of the line side inductor also decreasesd. Results are presented to show the substantial advantages of the doubly fed system.