274 resultados para Ion trap
em Indian Institute of Science - Bangalore - Índia
Resumo:
This paper investigates the loss of high mass ions due to their initial thermal energy in ion trap mass analyzers. It provides an analytical expression for estimating the percentage loss of ions of a given mass at a particular temperature, in a trap operating under a predetermined set of conditions. The expression we developed can be used to study the loss of ions due to its initial thermal energy in traps which have nonlinear fields as well as those which have linear fields. The expression for the percentage of ions lost is shown to be a function of the temperature of the ensemble of ions, ion mass and ion escape velocity. An analytical expression for the escape velocity has also been derived in terms of the trapping field, drive frequency and ion mass. Because the trapping field is determined by trap design parameters and operating conditions, it has been possible to study the influence of these parameters on ion loss. The parameters investigated include ion temperature, magnitude of the initial potential applied to the ring electrode (which determines the low mass cut-off), trap size, dimensions of apertures in the endcap electrodes and RF drive frequency. Our studies demonstrate that ion loss due to initial thermal energy increases with increase in mass and that, in the traps investigated, ion escape occurs in the radial direction. Reduction in the loss of high mass ions is favoured by lower ion temperatures, increasing low mass cut-off, increasing trap size, and higher RF drive frequencies. However, dimensions of the apertures in the endcap electrodes do not influence ion loss in the range of aperture sizes considered. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper proposes a technique to cause unidirectional ion ejection in a quadrupole ion trap mass spectrometer operated in the resonance ejection mode. In this technique a modified auxiliary dipolar excitation signal is applied to the endcap electrodes. This modified signal is a linear combination of two signals. The first signal is the nominal dipolar excitation signal which is applied across the endcap electrodes and the second signal is the second harmonic of the first signal, the amplitude of the second harmonic being larger than that of the fundamental. We have investigated the effect of the following parameters on achieving unidirectional ion ejection: primary signal amplitude, ratio of amplitude of second harmonic to that of primary signal amplitude, different operating points, different scan rates, different mass to charge ratios and different damping constants. In all these simulations unidirectional ejection of destabilized ions has been successfully achieved. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
This article develops a simple analytical expression that relates ion axial secular frequency to field aberration in ion trap mass spectrometers. Hexapole and octopole aberrations have been considered in the present computations. The equation of motion of the ions in a pseudopotential well with these superpositions has the form of a Duffing-like equation and a perturbation method has been used to obtain the expression for ion secular frequency as a function of field imperfections. The expression indicates that the frequency shift is sensitive to the sign of the octopole superposition and insensitive to the sign of the hexapole superposition. Further, for weak multipole superposition of the same magnitude, octopole superposition causes a larger frequency shift in comparison to hexapole superposition.
Resumo:
This paper presents two approximate analytical expressions for nonlinear electric fields in the principal direction in axially symmetric (3D) and two dimensional (2D) ion trap mass analysers with apertures (holes in case of 3D traps and slits in case of 2D traps) on the electrodes. Considered together (3D and 2D), we present composite approximations for the principal unidirectional nonlinear electric fields in these ion traps. The composite electric field E has the form E = E-noaperture + E-aperture. where E-noaperture is the field within an imagined trap which is identical to the practical trap except that the apertures are missing and E-aperture is the field contribution due to apertures on the two trap electrodes. The field along the principal axis, of the trap can in this way be well approximated for any aperture that is not too large. To derive E-aperture. classical results of electrostatics have been extended to electrodes with finite thickness and different aperture shapes.E-noaperture is a modified truncated multipole expansion for the imagined trap with no aperture. The first several terms in the multipole expansion are in principle exact(though numerically determined using the BEM), while the last term is chosen to match the field at the electrode. This expansion, once Computed, works with any aperture in the practical trap. The composite field approximation for axially symmetric (3D) traps is checked for three geometries: the Paul trap, the cylindrical ion trap (CIT) and an arbitrary other trap. The approximation for 2D traps is verified using two geometries: the linear ion trap (LIT) and the rectilinear ion trap (RIT). In each case, for two aperture sizes (10% and 50% of the trap dimension), highly satisfactory fits are obtained. These composite approximations may be used in more detailed nonlinear ion dynamics Studies than have been hitherto attempted. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In recent work (Int. J. Mass Spec., vol. 282, pp. 112–122) we have considered the effect of apertures on the fields inside rf traps at points on the trap axis. We now complement and complete that work by considering off-axis fields in axially symmetric (referred to as “3D”) and in two dimensional (“2D”) ion traps whose electrodes have apertures, i.e., holes in 3D and slits in 2D. Our approximation has two parts. The first, EnoAperture, is the field obtained numerically for the trap under study with apertures artificially closed. We have used the boundary element method (BEM) for obtaining this field. The second part, EdueToAperture, is an analytical expression for the field contribution of the aperture. In EdueToAperture, aperture size is a free parameter. A key element in our approximation is the electrostatic field near an infinite thin plate with an aperture, and with different constant-valued far field intensities on either side. Compact expressions for this field can be found using separation of variables, wherein the choice of coordinate system is crucial. This field is, in turn, used four times within our trap-specific approximation. The off-axis field expressions for the 3D geometries were tested on the quadrupole ion trap (QIT) and the cylindrical ion trap (CIT), and the corresponding expressions for the 2D geometries were tested on the linear ion trap (LIT) and the rectilinear ion trap (RIT). For each geometry, we have considered apertures which are 10%, 30%, and 50% of the trap dimension. We have found that our analytical correction term EdueToAperture, though based on a classical small-aperture approximation, gives good results even for relatively large apertures.
Resumo:
In this study we present approximate analytical expressions for estimating the variation in multipole expansion coefficients as a function of the size of the apertures in the electrodes in axially symmetric (3D) and two-dimensional (2D) ion trap ion traps. Following the approach adopted in our earlier studies which focused on the role of apertures to fields within the traps, here too, the analytical expression we develop is a sum of two terms, A(n,noAperiure), the multipole expansion coefficient for a trap with no apertures and A(n,dueToAperture), the multipole expansion coefficient contributed by the aperture. A(n,noAperture) has been obtained numerically and A(n,dueToAperture) is obtained from the n th derivative of the potential within the trap. The expressions derived have been tested on two 3D geometries and two 2D geometries. These include the quadrupole ion trap (QIT) and the cylindrical ion trap (CIT) for 3D geometries and the linear ion trap (LIT) and the rectilinear ion trap (RIT) for the 2D geometries. Multipole expansion coefficients A(2) to A(12), estimated by our analytical expressions, were compared with the values obtained numerically (using the boundary element method) for aperture sizes varying up to 50% of the trap dimension. In all the plots presented, it is observed that our analytical expression for the variation of multipole expansion coefficients versus aperture size closely follows the trend of the numerical evaluations for the range of aperture sizes considered. The maximum relative percentage errors, which provide an estimate of the deviation of our values from those obtained numerically for each multipole expansion coefficient, are seen to be largely in the range of 10-15%. The leading multipole expansion coefficient, A(2), however, is seen to be estimated very well by our expressions, with most values being within 1% of the numerically determined values, with larger deviations seen for the QIT and the LIT for large aperture sizes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a technique to vary the electric field within a cylindrical ion trap (CIT) mass spectrometer while it is in operation. In this technique, the electrodes of the CIT are split into number of mini-electrodes and different voltages are applied to these split-electrodes to achieve the desired field. In our study we have investigated two geometries of the split-electrode CIT. In the first, we retain the flat endcap electrodes of the CIT but split the ring electrode into five mini-rings. In the second configuration, we split the ring electrode of the CIT into three mini-rings and also divide the endcaps into two mini-discs. By applying different potentials to the mini-rings and mini-discs of these geometries we have shown that the field within the trap can be optimized to desired values. In our study, two different types of fields were targeted. In the first, potentials were adjusted to obtain a linear electric field and, in the second, a controlled higher order even multipole field was obtained by adjusting the potential. We have shown that the different potentials required can be derived from a single RF generator by connecting appropriate capacitor terminations to split electrodes. The field within the trap can be modified by changing the values of the external capacitors. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Decoherence as an obstacle in quantum computation is viewed as a struggle between two forces [1]: the computation which uses the exponential dimension of Hilbert space, and decoherence which destroys this entanglement by collapse. In this model of decohered quantum computation, a sequential quantum computer loses the battle, because at each time step, only a local operation is carried out but g*(t) number of gates collapse. With quantum circuits computing in parallel way the situation is different- g(t) number of gates can be applied at each time step and number gates collapse because of decoherence. As g(t) ≈ g*(t) competition here is even [1]. Our paper improves on this model by slowing down g*(t) by encoding the circuit in parallel computing architectures and running it in Single Instruction Multiple Data (SIMD) paradigm. We have proposed a parallel ion trap architecture for single-bit rotation of a qubit.
Resumo:
A lectin from phloem exudates of Luffa acutangula (ridge gourd) was purified on chitin affinity chromatography and characterized for its amino acid sequence and to study the role of tryptophan in its activity. The purified lectin was subjected to various proteolytic digestions, and the resulting peptides were analyzed by liquid chromatography coupled electrospray ionization ion trap mass spectrometer. The peptide precursor ions were fragmented by collision-induced dissociation or electron transfer dissociation experiments, and a manual interpretation of MS/MS was performed to deduce amino acid sequence. This gave rise to almost complete sequence coverage of the lectin which showed high-sequence similarity with deduced sequences of phloem lectins present in the database. Chemical modification of lysine, tyrosine, histidine, arginine, aspartic acid, and glutamic acid residues did not inhibit the hemagglutinating activity. However, the modification of tryptophan residues using N-bromosuccinimide showed the loss of hemagglutinating activity. Additionally, the mapping of tryptophan residues was performed to determine the extent and number of residues modified, which revealed that six residues per molecule were oxidized suggesting their accessibility. The retention of the lectin activity was seen when the modifications were performed in the presence of chitooligosaccharides due to protection of a tryptophan residue (W-102) in the protein. These studies taken together have led to the identification of a particular tryptophan residue (W-102) in the activity of the lectin. (c) 2015 IUBMB Life, 67(12):943-953, 2015
Resumo:
Using the critical percolation conductance method the energy-dependent diffusion coefficient associated with thermally assisted transfer of the R1 line excitation between single Cr3+ ions with strain-induced randomness has been calculated in the 4A2 to E(2E) transition energies. For localized states sufficiently far away from the mobility edge the energy transfer is dominated by dipolar interactions, while very close to the mobility edge it is determined by short-range exchange interactions. Using the above energy-dependent diffusion coefficient a macroscopic diffusion equation is solved for the rate of light emission by Cr3+ ion-pair traps to which single-ion excitations are transferred. The dipolar mechanism leads to good agreement with recent measurements of the pair emission rate by Koo et al. (Phys. Rev. Lett., vol.35, p.1669 (1975)) right up to the mobility edge.
Resumo:
A simple method to generate time domain tailored waveforms for excitation of ion axial amplitude in Paul trap mass spectrometers is described. The method is based on vector summation of sine waves followed by time domain sampling to obtain the discrete time domain data. A smoothing technique based on the time domain Kaiser window is then applied to the data so as to minimize the frequency domain Gibb's oscillations. The dynamic range of the time domain signal is controlled by phase modulation and time extension of the time domain waveform. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
Single crystal (100) wafers of n-InSb were implanted with 50 MeV Li3+ ions at various fluences ranging from 10(10) to 10(14) ions/cm(2) at room temperature. Investigations of the optical, electrical, and structural properties of the as-grown, irradiated, annealed wafers were carried out by infrared and Raman spectroscopies, Hall measurements, and high resolution x-ray diffraction (HRXRD). In the case of samples irradiated with an ion fluence of 1.6x10(14) ions/cm(2), electrical measurements at 80 K reveal that there is a decrease in carrier concentration from 8.5x10(15) (for unirradiated) to 1.1x10(15)/cm(3) and an increase in mobility from 5.4x10(4) to 1.67x10(5) cm(2)/V s. The change in carrier concentration is attributed to the creation of electron trap centers induced by ion beam irradiation and the increase in mobility to the formation of electrical inactive complexes. Nevertheless, even with the irradiation at 1.6x10(14) ions/cm(2) fluence the crystalline quality remains largely unaffected, as is seen from HRXRD and Raman studies. (C) 2001 American Institute of Physics.
Resumo:
Structural, iono (IL) and thermoluminescence (TL) studies of Zn2SiO4:Sm3+ (1-5 mol%) nanophosphor bombarded with swift heavy ions in the fluence range 3.91 x 10(12)-21.48 x 10(12) cm(-2) have been carried out. The average crystallite sizes for pristine and ion irradiated for 3.91 x 10(12) ions cm(-2) and 21.48 x 10(12) ions cm(-2) were found to be 34, 26 and 20 nm. With increase of ion fluence, the intensity of XRD peaks decreases and FWHM increases. The peak broadening indicates the stress induced point/clusters defects produced due to heavy ion irradiation. IL studies were carried out for different Sm3+ concentrations in Zn2SiO4 by irradiating with ion fluence of 15.62 x 10(12) ions cm(-2). The characteristic emission peaks at similar to 562, 599, 646 and 701 nm were recorded by exciting Si7+ ions in the fluence range 3.91 x 10(12)-21.48 x 10(12) ions cm(-2). These peaks were attributed to (4)G(5/2)-> H-6(5/2) (562 nm), (4)G(5/2)-> H-6(7/2) (599 nm), (4)G(5/2)-> H-6(9/2) (646 nm), and (4)G(5/2)-> H-6(5/2) (701 nm) transitions of Sm3+. The highest emission was recorded at 3 mol% of Sm3+ doped Zn2SiO4. TL studies were carried out for 3 mol% Sm3+ concentration in the fluence range 3.91 x 10(12)-21.48 x 10(12) ions cm(-2). Two U glow peaks at 152 and 223 degrees C were recorded. The kinetic parameters (E, b, and s), were estimated using Chen's peak shape method. Simple glow curve structure (223 degrees C), highly resistive, increase in TL. intensity up to 19.53 x 10(12) ions cm(-2), simple trap distribution makes Zn2SiO4:Sm3+ (3 mol%) phosphor highly useful in radiation dosimetry.
Resumo:
We have designed a four-helix protein that is expected to tetramerize in the membrane to form an ion channel with a structurally well defined pore. A synthetic peptide corresponding to the channel lining helix facilitates ion transport across liposomal membranes and largely helical in membranes. Detailed circular dichroism studies of the peptide in methanol, water and methanal-water mixtures reveal that it is helical in methanol, beta-structured in 97.5% water and a combination of these two structures at intermediate compositions of methanol and water. A fluorescence resonance energy transfer study of the peptide shows that the peptide is monomeric in methanol but undergoes extensive anti-parallel aggregation in aqueous solution.
Resumo:
Lithium silicophosphate glasses have been prepared by a sol-gel route over a wide range of compositions. Their structural and electrical properties have been investigated. Infrared spectroscopic studies show the presence of hydroxyl groups attached to Si and P. MAS NMR investigations provide evidence for the presence of different phosphatic units in the structure. The variations of de conductivities at 423 K and activation energies have been studied as a function of composition, and both exhibit an increasing trend with the ratio of nonbridging oxygen to bridging oxygen in the structure. Ac conductivity behavior shows that the power law exponent, s, is temperature dependent and exhibits a minimum. Relaxation behavior has been examined in detail using an electrical modulus formalism, and modulus data were fitted to Kohlraush-William-Watts stretched exponential function. A structural model has been proposed and the unusual properties exhibited by this unique system of glasses have been rationalized using this model. Ion transport in these glasses appears to be confined to unidimensional conduits defined by modified phosphate chains and interspersed with unmodified silica units.