40 resultados para Insect bites and stings
em Indian Institute of Science - Bangalore - Índia
Resumo:
Insect societies such as those of ants, bees, and wasps consist of 1 or a small number of fertile queens and a large number of sterile or nearly sterile workers. While the queens engage in laying eggs, workers perform all other tasks such as nest building, acquisition and processing of food, and brood care. How do such societies function in a coordinated and efficient manner? What are the rules that individuals follow? How are these rules made and enforced? These questions are of obvious interest to us as fellow social animals but how do we interrogate an insect society and seek answers to these questions? In this article I will describe my research that was designed to see answers from an insect society to a series of questions of obvious interest to us. I have chosen the Indian paper wasp Ropalidia marginata for this purpose, a species that is abundantly distributed in peninsular India and serves as an excellent model system. An important feature of this species is that queens and workers are morphologically identical and physiologically nearly so. How then does an individual become a queen? How does the queen suppress worker reproduction? How does the queen regulate the nonreproductive activities of the workers? What is the function of aggression shown by different individuals? How and when is the queen's heir decided? I will show how such questions can indeed be investigated and will emphasize the need for a whole range of different techniques of observation and experimentation.
Resumo:
Aim of the study: Most people especially in rural areas depend on herbal medicines to treat many diseases including inflammation-related ailments such as rheumatism, muscle swelling, cut wound, accidental bone fracture, insect bites, pains and burn by fire and hot water. The objectives of this study were: to catalog ethno-medicinal plants of Lohit community, ecological status, indigenous folk medicinal uses, morphological parts used and to determine their reported pharmacological studies. Materials and methods: The ethnobotanical information on traditional medicinal plants exclusively used for management of inflammation-related ailments by the Khampti community of Arunachal Pradesh, India was based on first-hand field survey work through semi-structured interviews. Results and conclusion: A total of 34 species in 32 genera and 22 families were encountered during the field survey. Botanical families such as Asteraceae, Euphorbiaceae, Zingiberaceae and Lamiaceae were represented by the highest numbers of species reported in this study. Thirteen plant species, namely: Bombax ceiba, Canarium strictum, Chloranthus erectus, Xanthium indicum, Lycopodium clavatum, Coleus blumei, Batrachospermum atrum, Chlorella vulgaris, Marchantia palmata, Marchantia polymorpha, Eria pannea, Sterculia villosa and Alpinia galanga are reported for the first time for the treatment of inflammation-related diseases.
Resumo:
1. Habitat fragmentation, anthropogenic disturbance and the introduction of invasive species are factors thought to structure ant assemblages. To understand responses of the ant community to changes in the environment, ants are commonly categorised into functional groups, a scheme developed and based on Australian ants. 2. Behaviourally dominant and aggressive ants of the dominant dolichoderinae functional group have been suggested to structure the ant assemblages in arid and semi-arid habitats of these regions. Given the limited geographical distribution of dominant dolichoderinae, it is crucial to determine the responses of the ant community to changes in the environment in their absence. 3. This study addresses this less studied aspect by considering the associations of ants of Western Ghats, India, with habitat, anthropogenic disturbance and introduced ants. We determined how ant functional groups respond to these factors in this region, where dominant dolichoderines are naturally absent, and whether responses are consistent with predictions derived from the ant functional group scheme. 4. This study provides new information on ant assemblages in a little-studied region. As in other parts of the world, ant assemblages in Western Ghats were strongly influenced by habitat and disturbance, with different functional groups associated with different habitats and levels of disturbance. 5. No functional group showed evidence of being influenced by the abundance of introduced species. In addition, predictions of negative interactions between functional groups were not supported. Our findings suggest that abiotic factors are universal determinants of ant assemblage structure, but that competitive interactions may not be.
Resumo:
In this study we analyzed climate and crop yields data from Indian cardamom hills for the period 1978-2007 to investigate whether there were significant changes in weather elements, and if such changes have had significant impact on the production of spices and plantation crops. Spatial and temporal variations in air temperatures (maximum and minimum), rainfall and relative humidity are evident across stations. The mean air temperature increased significantly during the last 30 years; the greatest increase and the largest significant upward trend was observed in the daily temperature. The highest increase in minimum temperature was registered for June (0.37A degrees C/18 years) at the Myladumpara station. December and January showed greater warming across the stations. Rainfall during the main monsoon months (June-September) showed a downward trend. Relative humidity showed increasing and decreasing trends, respectively, at the cardamom and tea growing tracts. The warming trend coupled with frequent wet and dry spells during the summer is likely to have a favorable effect on insect pests and disease causing organisms thereby pesticide consumption can go up both during excess rainfall and drought years. The incidence of many minor pest insects and disease pathogens has increased in the recent years of our study along with warming. Significant and slight increases in the yield of small cardamom (Elettaria cardamomum M.) and coffee (Coffea arabica), respectively, were noticed in the recent years.; however the improvement of yield in tea (Thea sinensis) and black pepper (Piper nigrum L.) has not been seen in our analysis.
Resumo:
Depending on their developmental stage in the life cycle, malaria parasites develop within or outside host cells, and in extremely diverse contexts such as the vertebrate liver and blood circulation, or the insect midgut and hemocoel. Cellular and molecular mechanisms enabling the parasite to sense and respond to the intra- and the extra-cellular environments are therefore key elements for the proliferation and transmission of Plasmodium, and therefore are, from a public health perspective, strategic targets in the fight against this deadly disease. The MALSIG consortium, which was initiated in February 2009, was designed with the primary objective to integrate research ongoing in Europe and India on i) the properties of Plasmodium signalling molecules, and ii) developmental processes occurring at various points of the parasite life cycle. On one hand, functional studies of individual genes and their products in Plasmodium falciparum (and in the technically more manageable rodent model Plasmodium berghei) are providing information on parasite protein kinases and phosphatases, and of the molecules governing cyclic nucleotide metabolism and calcium signalling. On the other hand, cellular and molecular studies are elucidating key steps of parasite development such as merozoite invasion and egress in blood and liver parasite stages, control of DNA replication in asexual and sexual development, membrane dynamics and trafficking, production of gametocytes in the vertebrate host and further parasite development in the mosquito. This article, which synthetically reviews such signalling molecules and cellular processes, aims to provide a glimpse of the global frame in which the activities of the MALSIG consortium will develop over the next three years.
Resumo:
Guanylyl cyclase C (GCC) is the receptor for the family of guanylin peptides and bacterial heat-stable enterotoxins (ST). The receptor is composed of an extracellular, ligand-binding domain and an intracellular domain with a region of homology to protein kinases and a guanylyl cyclase catalytic domain. We have expressed the entire intracellular domain of GCC in insect cells and purified the recombinant protein, GCC-IDbac, to study its catalytic activity and regulation. Kinetic properties of the purified protein were similar to that of full-length GCC, and high activity was observed when MnGTP was used as the substrate. Nonionic detergents, which stimulate the guanylyl cyclase activity of membrane-associated GCC, did not appreciably increase the activity of GCC-IDbac, indicating that activation of the receptor by Lubrol involved conformational changes that required the transmembrane and/or the extracellular domain. The guanylyl cyclase activity of GCC-IDbac was inhibited by Zn2+, at concentrations shown to inhibit adenylyl cyclase, suggesting a structural homology between the two enzymes. Covalent crosslinking of GCC-IDbac indicated that the protein could associate as a dimer, but a large fraction was present as a trimer. Gel filtration analysis also showed that the major fraction of the protein eluted at a molecular size of a trimer, suggesting that the dimer detected by cross-linking represented subtle differences in the juxtaposition of the individual polypeptide chains. We therefore provide evidence that the trimeric state of GCC is catalytically active, and sequences required to generate the trimer are present in the intracellular domain of GCC.
Resumo:
The silk glands of Bombyx mori, a highly replicative tissue contains high levels of DNA polymerases α, σ and epsilon (Porson) but not DNA polymerase-β. However, we detected the latter activity in the gonadal tissues, viz. the pupal ovaries and testes of B. mori. The enzyme has been purified to homogeneity from the pupal ovaries by a series of column chromatographic and affinity purification steps. The enzyme satisfied the criteria to be designated as DNA polymerase-β based on its small size, requirement for high concentration of monovalent cations for catalytic activity, sensitivity to ddTTP and insensitivity to aphidicolin. It is a monomeric polypeptide of Mr 40 kDa, and the Km for dNTPs ranges between 8–20 μM. DNA polymerase-β is biochemically and immunologically distinct from DNA polymerase-α from the silk glands of B. mori. The enzyme showed a preference for gapped DNA, and could not elongate ultraviolet irradiated template beyond the pyrimidine dimers. The absence of any associated primase and exonuclease activities from this enzyme, and its conspicuous absence in the highly replicative tissue, imply that it is unlikely to participate in the DNA endoreplication process.
Resumo:
A clone showing female-specific expression was identified from an embryonic cDNA library of a mealybug, Planococcus lilacinus, In Southern blots this clone (P7) showed hybridization to genomic DNA of females, but not to that of males, However, P7 showed no hybridization to nuclei of either sex, raising the possibility that it was extrachromosomal in origin, In sectioned adult females P7 hybridized to an abdominal organ called the mycetome. The mycetome is formed by mycetocytes, which are polyploid cells originating from the polar bodies and cleavage nuclei that harbour maternally transmitted, intracellular symbionts. Electron microscopy confirmed the presence of symbionts within the mycetocytes, Sequence analysis showed that P7 is a 16S rRNA gene, confirming its prokaryotic origin, P7 transcripts are localized to one pole in young embryos but are found in the pole as well as in the germ band during later stages of development, P7 expression is detectable in young embryos of both sexes but the absence of P7 in third instar and adult males suggests that this gene, and hence the endosymbionts, are subject to sex-specific elimination. Copyright (C) 1997 Elsevier Science Ltd.
Resumo:
1. Habitat selection is a universal aspect of animal ecology that has important fitness consequences and may drive patterns of spatial organisation in ecological communities. 2. Measurements of habitat selection have mostly been carried out on single species and at the landscape level. Quantitative studies examining microhabitat selection at the community level are scarce, especially in insects. 3. In this study, microhabitat selection in a natural assemblage of cricket species was examined for the first time using resource selection functions (RSF), an approach more commonly applied in studies of macrohabitat selection. 4. The availability and differential use of six microhabitats by 13 species of crickets inhabiting a tropical evergreen forest in southern India was examined. The six available microhabitats included leaf litter-covered ground, tree trunks, dead logs, brambles, understorey and canopy foliage. The area offered by the six microhabitats was estimated using standard methods of forest structure measurement. Of the six microhabitats, the understorey and canopy accounted for approximately 70% of the total available area. 5. The use of different microhabitats by the 13 species was investigated using acoustic sampling of crickets to locate calling individuals. Using RSF, it was found that of 13 cricket species examined, 10 showed 100% selection for a specific microhabitat. Of these, two species showed fairly high selection for brambles and dead logs, which were rare microhabitats, highlighting the importance of preserving all components of forest structure.
Resumo:
The dopamine monoxygenase N-terminal (DOMON) domain is found in extracellular proteins across several eukaryotic and prokaryotic taxa. It has been proposed that this domain binds to heme or sugar moieties. Here, we have analyzed the role of four highly conserved amino acids in the DOMON domain of the Drosophila melanogaster Knickkopf protein that is inserted into the apical plasma membrane and assists extracellular chitin organization. In principal, we generated Knickkopf versions with exchanged residues tryptophan(299,) methionine(333), arginine(401), or histidine(437), and scored for the ability of the respective engineered protein to normalize the knickkopf mutant phenotype. Our results confirm the absolute necessity of tryptophan(299,) methionine(333), and histidine(437) for Knickkopf function and stability, the latter two being predicted to be critical for heme binding. In contrast, arginine(401) is required for full efficiency of Knickkopf activity. Taken together, our genetic data support the prediction of these residues to mediate the function of Knickkopf during cuticle differentiation in insects. Hence, the DOMON domain is apparently an essential factor contributing to the construction of polysaccharide-based extracellular matrices.
Resumo:
Peanut (Arachis hypogaea) seed lectin, PNA is widely used to identify tumor specific antigen (T-antigen), Gal beta 1-3GalNAc on the eukaryotic cell surface. The functional amino acid coding region of a cDNA clone, pBSH-PN was PCR amplified and cloned downstream of the polyhedrin promoter in the Autographa californica nucleopolyhedrovirus (AcNPV) based transfer vector pVL1393. Co-transfection of Spodoptera frugiperda cells (Sf9) with the transfer vector, pAcPNA and AcRP6 (a recombinant AcNPV having B-gal downstream of the polyhedrin promoter) DNAs produced a recombinant virus, AcPNA which expresses PNA. Infection of suspension culture of Sf9 cells with plaque purified AcPNA produced as much as 9.8 mg PNA per liter (2.0 x 10(6) cells/ml) of serum-free medium. Intracellularly expressed protein (re-PNA) was purified to apparent homogeneity by affinity chromatography using ECD-Sepharose. Polyclonal antibodies against natural PNA (n-PNA) crossreacted with re-PNA. The subunit molecular weight (30 kDa), hemagglutination activity, and carbohydrate specificity of re-PNA were found to be identical to that of n-PNA, thus confirming the abundant production of a functionally active protein in the baculovirus expression system.
Resumo:
A cytosine-specific DNA methyltransferase (EC 2.1.1.37) has been purified to near homogeneity from a mealybug (Planococcus lilacinus). The enzyme can methylate cytosine residues in CpG sequences as well as CpA sequences. The apparent molecular weight of the enzyme was estimated as 135,000 daltons by FPLC. The enzyme exhibits a processive mode of action and a salt dependance similar to mammalian methylases. Mealybug methylase exhibits a preference for denatured DNA substrates.
Changing resonator geometry to boost sound power decouples size and song frequency in a small insect
Resumo:
Despite their small size, some insects, such as crickets, can produce high amplitude mating songs by rubbing their wings together. By exploiting structural resonance for sound radiation, crickets broadcast species-specific songs at a sharply tuned frequency. Such songs enhance the range of signal transmission, contain information about the signaler's quality, and allow mate choice. The production of pure tones requires elaborate structural mechanisms that control and sustain resonance at the species-specific frequency. Tree crickets differ sharply from this scheme. Although they use a resonant system to produce sound, tree crickets can produce high amplitude songs at different frequencies, varying by as much as an octave. Based on an investigation of the driving mechanism and the resonant system, using laser Doppler vibrometry and finite element modeling, we show that it is the distinctive geometry of the crickets' forewings (the resonant system) that is responsible for their capacity to vary frequency. The long, enlarged wings enable the production of high amplitude songs; however, as a mechanical consequence of the high aspect ratio, the resonant structures have multiple resonant modes that are similar in frequency. The drive produced by the singing apparatus cannot, therefore, be locked to a single frequency, and different resonant modes can easily be engaged, allowing individual males to vary the carrier frequency of their songs. Such flexibility in sound production, decoupling body size and song frequency, has important implications for conventional views of mate choice, and offers inspiration for the design of miniature, multifrequency, resonant acoustic radiators.
Resumo:
Due to environmental concerns, health hazards to man and the evolution of resistance in insect pests, there have been constant efforts to discover newer insecticides both from natural sources and by chemical synthesis. Natural sources for novel molecules hold promise in view of their eco-friendly nature, selectivity and mammalian safety. We have isolated one natural bioactive molecule from the leaves of Lantana camara named Coumaran, based on various physical-chemical and spectroscopic techniques (IR, H-1 NMR, C-13 NMR and MS). Coumaran is highly toxic and very low concentration is needed for control of stored product insects. This molecule has potent grain protectant potential and caused significant reduction in F1 progeny of all the three species in the treated grain and the progeny was completely suppressed at 30 mu g/l. The differences in germination between the control and treated grains were not significant. The lack of any adverse effect of Coumaran on the seed germination is highly desirable for a grain protectant, becoming a potential source of biofumigant for economical and environmentally friendly pest control strategies against stored grain pests during storage of grains or pulses. (C) 2013 Elsevier B.V. All rights reserved.