65 resultados para Initiator Codon
em Indian Institute of Science - Bangalore - Índia
Resumo:
Formylation of the initiator tRNA is essential for normal growth of Escherichia coil, The initiator tRNA containing the U35A36 mutation (CUA anticodon) initiates from UAG codon, However, an additional mutation at position 72 (72A --> G) renders the tRNA (G72/U35A36) inactive in initiation because it is defective in formylation, In this study, we isolated U1G72/U35A36 tRNA containing a wobble base pair at 1-72 positions as an intragenic suppressor of the G72 mutation. The U1G72/U35A36 tRNA is formylated and participates in initiation. More importantly, we show that the mismatch at 1-72 positions of the initiator tRNA, which was thus far thought to be the hallmark of the resistance of this tRNA against peptidyl-tRNA hydrolase (PTH), is not sufficient, The amino acid attached to the initiator tRNA is also important in conferring protection against PTH. Further, we show that the relative levels of PTH and IF2 influence the path adopted by the initiator tRNAs in protein synthesis. These findings provide an important clue to understand the dual function of the single tRNA(Met) in initiation and elongation, in the mitochondria of various organisms.
Resumo:
Translation of mRNAs is the primary function of the ribosomal machinery. Although cells allow for a certain level of translational errors/mistranslation (which may well be a strategic need), maintenance of the fidelity of translation is vital for the cellular function and fitness. The P-site bound initiator tRNA selects the start codon in an mRNA and specifies the reading frame. A direct P-site binding of the initiator tRNA is a function of its special structural features, ribosomal elements, and the initiation factors. A highly conserved feature of the 3 consecutive G:C base pairs (3GC pairs) in the anticodon stem of the initiator tRNAs is vital in directing it to the P-site. Mutations in the 3GC pairs diminish/abolish initiation under normal physiological conditions. Using molecular genetics approaches, we have identified conditions that allow initiation with the mutant tRNAs in Escherichia coli. During our studies, we have uncovered a novel phenomenon of in vivo initiation by elongator tRNAs. Here, we recapitulate how the cellular abundance of the initiator tRNA, and nucleoside modifications in rRNA are connected with the tRNA selection in the P-site. We then discuss our recent finding of how a conserved feature in the mRNA, the Shine-Dalgarno sequence, influences tRNA selection in the P-site.
Resumo:
The polymerization of methyl methacrylate initiated by a mixed ligand complex. [NN-ethylenebis(salicylideneiminato)](benzoylacetonato)cobalt(III) has been studied in bulk and in benzene at 70° and 80°. The rate of polymerization is proportional to (concentration of the chelate)Image and the monomer exponent is close to 1.5. The activation energy and the kinetic and transfer constants are evaluated. A free radical mechanism has been proposed.
Resumo:
The polymerization of methyl methacrylate initiated by a mixed ligand complex. [NN′-ethylenebis(salicylideneiminato)](benzoylacetonato)cobalt(III) has been studied in bulk and in benzene at 70° and 80°. The rate of polymerization is proportional to (concentration of the chelate)1/2 and the monomer exponent is close to 1.5. The activation energy and the kinetic and transfer constants are evaluated. A free radical mechanism has been proposed.
Resumo:
Abstract is not available.
Resumo:
Polymerization of methyl methacrylate in the presence of a mixed ligand complex, [N,N-ethylenebis(salicylideneiminato)](acetylacetonato)cobalt(III) in benzene was studied. The rate of polymerization was proportional to the square root of the concentration of the chelate and the monomer exponent was 1.67 and 1.69 at 60 and 70°C, respectively. The activation energy and the kinetic and transfer constants were evaluated. A free-radical mechanism has been proposed.
Resumo:
The behavior of the chelate, ferric dipivaloylmethide, Fe(DPM)3, in vinyl polymerization systems was investigated. The polymerization was found to be of free-radical nature. The rate of polymerization was proportional to the square root of the concentration of the chelate. The monomer exponent was close to 1.5 for the Fe(DPM)3-initiated polymerization of styrene and methyl methacrylate. The kinetic and transfer constants and activation energies for these systems have been evaluated. Spectral studies revealed the possibility of a complex formation between the chelate and the monomer. A kinetic scheme for the Fe(DPM)3-initiated polymerization is derived based on this initial complex formation.
Resumo:
The enzymes of the family of tRNA synthetases perform their functions with high precision by synchronously recognizing the anticodon region and the aminoacylation region, which are separated by ?70 in space. This precision in function is brought about by establishing good communication paths between the two regions. We have modeled the structure of the complex consisting of Escherichia coli methionyl-tRNA synthetase (MetRS), tRNA, and the activated methionine. Molecular dynamics simulations have been performed on the modeled structure to obtain the equilibrated structure of the complex and the cross-correlations between the residues in MetRS have been evaluated. Furthermore, the network analysis on these simulated structures has been carried out to elucidate the paths of communication between the activation site and the anticodon recognition site. This study has provided the detailed paths of communication, which are consistent with experimental results. Similar studies also have been carried out on the complexes (MetRS + activated methonine) and (MetRS + tRNA) along with ligand-free native enzyme. A comparison of the paths derived from the four simulations clearly has shown that the communication path is strongly correlated and unique to the enzyme complex, which is bound to both the tRNA and the activated methionine. The details of the method of our investigation and the biological implications of the results are presented in this article. The method developed here also could be used to investigate any protein system where the function takes place through long-distance communication.
Resumo:
The accuracy of the initiator tRNA (tRNA(fMet)) selection in the ribosomal P-site is central to the fidelity of protein synthesis. A highly conserved occurrence of three consecutive G-C base pairs in the anticodon stem of tRNA(fMet) contributes to its preferential selection in the P-site. In a genetic screen, using a plasmid borne copy of an inactive tRNA(fMet) mutant wherein the three G-C base pairs were changed, we isolated Escherichia coli strains that allow efficient initiation with the tRNA(fMet) mutant. Here, extensive characterization of two such strains revealed novel mutations in the metZWV promoter severely compromising tRNA(fMet) levels. Low cellular abundance of the chromosomally encoded tRNA(fMet) allows efficient initiation with the tRNA(fMet) mutant and an elongator tRNA(Gln), revealing that a high abundance of the cellular tRNA(fMet) is crucial for the fidelity of initiator tRNA selection on the ribosomal P-site in E. coli. We discuss possible implications of the changes in the cellular tRNA(fMet) abundance in proteome remodeling.
Resumo:
Occasionally, ribosomes stall on mRNAs prior to the completion of the polypeptide chain. In Escherichia coli and other eubacteria, tmRNA-mediated trans-translation is a major mechanism that recycles the stalled ribosomes. The tmRNA possesses a tRNA-like domain and a short mRNA region encoding a short peptide (ANDENYALAA in E. coli) followed by a termination codon. The first amino acid (Ala) of this peptide encoded by the resume codon (GCN) is highly conserved in tmRNAs in different species. However, reasons for the high evolutionary conservation of the resume codon identity have remained unclear. In this study, we show that changing the E. coli tmRNA resume codon to other efficiently translatable codons retains efficient functioning of the tmRNA. However, when the resume codon was replaced with the low-usage codons, its function was adversely affected. Interestingly, expression of tRNAs decoding the low-usage codon from plasmid-borne gene copies restored efficient utilization of tmRNA. We discuss why in E. coli, the GCA (Ala) is one of the best codons and why all codons in the short mRNA of the tmRNA are decoded by the abundant tRNAs.
Resumo:
Of all tRNAs, initiator tRNA is unique in its ability to start protein synthesis by directly binding the ribosomal P-site. This ability is believed to derive from the almost universal presence of three consecutive G-C base (3G-C) pairs in the anticodon stem of initiator tRNA. Consistent with the hypothesis, a plasmid-borne initiator tRNA with one, two, or all 3G-C pairs mutated displays negligible initiation activity when tested in a WT Escherichia coli cell. Given this, the occurrence of unconventional initiator tRNAs lacking the 3G-C pairs, as in some species of Mycoplasma and Rhizobium, is puzzling. We resolve the puzzle by showing that the poor activity of unconventional initiator tRNAs in E. coli is because of competition from a large pool of the endogenous WT initiator tRNA (possessing the 3G-C pairs). We show that E. coli can be sustained on an initiator tRNA lacking the first and third G-C pairs; thereby reducing the 3G-C rule to a mere middle G-C requirement. Two general inferences following from our findings, that the activity of a mutant gene product may depend on its abundance in the cell relative to that of the WT, and that promiscuous initiation with elongator tRNAs has the potential to enhance phenotypic diversity without affecting genomic integrity, have been discussed.
Resumo:
The accuracy of pairing of the anticodon of the initiator tRNA (tRNA(fMet)) and the initiation codon of an mRNA, in the ribosomal P-site, is crucial for determining the translational reading frame. However, a direct role of any ribosomal element(s) in scrutinizing this pairing is unknown. The P-site elements, m(2)G966 (methylated by RsmD), m(5)C967 (methylated by RsmB) and the C-terminal tail of the protein S9 lie in the vicinity of tRNA(fMet). We investigated the role of these elements in initiation from various codons, namely, AUG, GUG, UUG, CUG, AUA, AUU, AUC and ACG with tRNA(CAU)(fmet) (tRNA(fMet) with CAU anticodon); CAC and CAU with tRNA(GUG)(fme); UAG with tRNA(GAU)(fMet) using in vivo and computational methods. Although RsmB deficiency did not impact initiation from most codons, RsmD deficiency increased initiation from AUA, CAC and CAU (2- to 3.6-fold). Deletion of the S9 C-terminal tail resulted in poorer initiation from UUG, GUG and CUG, but in increased initiation from CAC, CAU and UAC codons (up to 4-fold). Also, the S9 tail suppressed initiation with tRNA(CAU)(fMet)lacking the 3GC base pairs in the anticodon stem. These observations suggest distinctive roles of 966/967 methylations and the S9 tail in initiation.
Resumo:
Human La protein has been implicated in facilitating the internal initiation of translation as well as replication of hepatitis C virus (HCV) RNA. Previously, we demonstrated that La interacts with the HCV internal ribosome entry site (IRES) around the GCAC motif near the initiator AUG within stem-loop IV by its RNA recognition motif (RRM) (residues 112 to 184) and influences HCV translation. In this study, we have deciphered the role of this interaction in HCV replication in a hepatocellular carcinoma cell culture system. We incorporated mutation of the GCAC motif in an HCV monocistronic subgenomic replicon and a pJFH1 construct which altered the binding of La and checked HCV RNA replication by reverse transcriptase PCR (RT-PCR). The mutation drastically affected HCV replication. Furthermore, to address whether the decrease in replication is a consequence of translation inhibition or not, we incorporated the same mutation into a bicistronic replicon and observed a substantial decrease in HCV RNA levels. Interestingly, La overexpression rescued this inhibition of replication. More importantly, we observed that the mutation reduced the association between La and NS5B. The effect of the GCAC mutation on the translation-to-replication switch, which is regulated by the interplay between NS3 and La, was further investigated. Additionally, our analyses of point mutations in the GCAC motif revealed distinct roles of each nucleotide in HCV replication and translation. Finally, we showed that a specific interaction of the GCAC motif with human La protein is crucial for linking 5' and 3' ends of the HCV genome. Taken together, our results demonstrate the mechanism of regulation of HCV replication by interaction of the cis-acting element GCAC within the HCV IRES with human La protein.
Resumo:
In all domains of life, initiator tRNA functions exclusively at the first step of protein synthesis while elongator tRNAs extend the polypeptide chain. Unique features of initiator tRNA enable it to preferentially bind the ribosomal P site and initiate translation. Recently, we showed that the abundance of initiator tRNA also contributes to its specialized role. This motivates the question, can a cell also use elongator tRNA to initiate translation under certain conditions? To address this, we introduced non-AUG initiation codons CCC (Pro), GAG (Glu), GGU (Gly), UCU (Ser), UGU (Cys), ACG (Thr), AAU (Asn), and AGA (Arg) into the uracil DNA glycosylase gene (ung) used as a reporter gene. Enzyme assays from log-phase cells revealed initiation from non-AUG codons when intracellular initiator tRNA levels were reduced. The activity increased significantly in stationary phase. Further increases in initiation from non-AUG codons occurred in both growth phases upon introduction of plasmid-borne genes of cognate elongator tRNAs. Since purine-rich Shine-Dalgarno sequences occur frequently on mRNAs (in places other than the canonical AUG codon initiation contexts), initiation with elongator tRNAs from the alternate contexts may generate proteome diversity under stress without compromising genomic integrity. Thus, by changing the relative amounts of initiator and elongator tRNAs within the cell, we have blurred the distinction between the two classes of tRNAs thought to be frozen through years of evolution.
Resumo:
Flaviviral RNA-dependent RNA polymerases (RdRps) initiate replication of the single-stranded RNA genome in the absence of a primer. The template sequence 5'-CU-3' at the 3'-end of the flaviviral genome is highly conserved. Surprisingly, flaviviral RdRps require high concentrations of the second incoming nucleotide GTP to catalyze de novo template-dependent RNA synthesis. We show that GTP stimulates de novo RNA synthesis by RdRp from Japanese encephalitis virus (jRdRp) also. Crystal structures of jRdRp complexed with GTP and ATP provide a basis for specific recognition of GTP. Comparison of the jRdRp(GTP) structure with other viral RdRp-GTP structures shows that GTP binds jRdRp in a novel conformation. Apo-jRdRp structure suggests that the conserved motif F of jRdRp occupies multiple conformations in absence of GTP. Motif F becomes ordered on GTP binding and occludes the nucleotide triphosphate entry tunnel. Mutational analysis of key residues that interact with GTP evinces that the jRdRp(GTP) structure represents a novel pre-initiation state. Also, binding studies show that GTP binding reduces affinity of RdRp for RNA, but the presence of the catalytic Mn2+ ion abolishes this inhibition. Collectively, these observations suggest that the observed pre-initiation state may serve as a check-point to prevent erroneous template-independent RNA synthesis by jRdRp during initiation.