54 resultados para IRREDUCIBLE REPRESENTATION

em Indian Institute of Science - Bangalore - Índia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Para-Bose commutation relations are related to the SL(2,R) Lie algebra. The irreducible representation [script D]alpha of the para-Bose system is obtained as the direct sum Dbeta[direct-sum]Dbeta+1/2 of the representations of the SL(2,R) Lie algebra. The position and momentum eigenstates are then obtained in this representation [script D]alpha, using the matrix mechanical method. The orthogonality, completeness, and the overlap of these eigenstates are derived. The momentum eigenstates are also derived using the wave mechanical method by specifying the domain of the definition of the momentum operator in addition to giving it a formal differential expression. By a careful consideration in this manner we find that the two apparently different solutions obtained by Ohnuki and Kamefuchi in this context are actually unitarily equivalent. Journal of Mathematical Physics is copyrighted by The American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A general derivation of the coupling constant relations which result on embedding a non-simple group like SU L (2) @ U(1) in a larger simple group (or graded Lie group) is given. It is shown that such relations depend only on the requirement (i) that the multiplet of vector fields form an irreducible representation of the unifying algebra and (ii) the transformation properties of the fermions under SU L (2). This point is illustrated in two ways, one by constructing two different unification groups containing the same fermions and therefore have same Weinberg angle; the other by putting different SU L (2) structures on the same fermions and consequently have different Weinberg angles. In particular the value sin~0=3/8 is characteristic of the sequential doublet models or models which invoke a large number of additional leptons like E 6, while addition of extra charged fermion singlets can reduce the value of sin ~ 0 to 1/4. We point out that at the present time the models of grand unification are far from unique.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is shown that the euclideanized Yukawa theory, with the Dirac fermion belonging to an irreducible representation of the Lorentz group, is not bounded from below. A one parameter family of supersymmetric actions is presented which continuously interpolates between the N = 2 SSYM and the N = 2 supersymmetric topological theory. In order to obtain a theory which is bounded from below and satisfies Osterwalder-Schrader positivity, the Dirac fermion should belong to a reducible representation of the Lorentz group and the scalar fields have to be reinterpreted as the extra components of a higher dimensional vector field.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Generalized Bose operators correspond to reducible representations of the harmonic oscillator algebra. We demonstrate their relevance in the construction of topologically non-trivial solutions in noncommutative gauge theories, focusing our attention to flux tubes, vortices, and instantons. Our method provides a simple new relation between the topological charge and the number of times the basic irreducible representation occurs in the reducible representation underlying the generalized Bose operator. When used in conjunction with the noncommutative ADHM construction, we find that these new instantons are in general not unitarily equivalent to the ones currently known in literature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The magnetic structures and the magnetic phase transitions in the Mn-doped orthoferrite TbFeO3 studied using neutron powder diffraction are reported. Magnetic phase transitions are identified at T-N(Fe/Mn) approximate to 295K where a paramagnetic-to-antiferromagnetic transition occurs in the Fe/Mn sublattice, T-SR(Fe/Mn) approximate to 26K where a spin-reorientation transition occurs in the Fe/Mn sublattice and T-N(R) approximate to 2K where Tb-ordering starts to manifest. At 295 K, the magnetic structure of the Fe/Mn sublattice in TbFe0.5Mn0.5O3 belongs to the irreducible representation Gamma(4) (G(x)A(y)F(z) or Pb'n'm). A mixed-domain structure of (Gamma(1) + Gamma(4)) is found at 250K which remains stable down to the spin re-orientation transition at T-SR(Fe/Mn) approximate to 26K. Below 26K and above 250 K, the majority phase (>80%) is that of Gamma(4). Below 10K the high-temperature phase Gamma(4) remains stable till 2K. At 2 K, Tb develops a magnetic moment value of 0.6(2) mu(B)/f.u. and orders long-range in F-z compatible with the Gamma(4) representation. Our study confirms the magnetic phase transitions reported already in a single crystal of TbFe0.5Mn0.5O3 and, in addition, reveals the presence of mixed magnetic domains. The ratio of these magnetic domains as a function of temperature is estimated from Rietveld refinement of neutron diffraction data. Indications of short-range magnetic correlations are present in the low-Q region of the neutron diffraction patterns at T < T-SR(Fe/Mn). These results should motivate further experimental work devoted to measure electric polarization and magnetocapacitance of TbFe0.5Mn0.5O3. (C) 2016 AIP Publishing LLC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The magnetic structures and the magnetic phase transitions in the Mn-doped orthoferrite TbFeO3 studied using neutron powder diffraction are reported. Magnetic phase transitions are identified at T-N(Fe/Mn) approximate to 295K where a paramagnetic-to-antiferromagnetic transition occurs in the Fe/Mn sublattice, T-SR(Fe/Mn) approximate to 26K where a spin-reorientation transition occurs in the Fe/Mn sublattice and T-N(R) approximate to 2K where Tb-ordering starts to manifest. At 295 K, the magnetic structure of the Fe/Mn sublattice in TbFe0.5Mn0.5O3 belongs to the irreducible representation Gamma(4) (G(x)A(y)F(z) or Pb'n'm). A mixed-domain structure of (Gamma(1) + Gamma(4)) is found at 250K which remains stable down to the spin re-orientation transition at T-SR(Fe/Mn) approximate to 26K. Below 26K and above 250 K, the majority phase (>80%) is that of Gamma(4). Below 10K the high-temperature phase Gamma(4) remains stable till 2K. At 2 K, Tb develops a magnetic moment value of 0.6(2) mu(B)/f.u. and orders long-range in F-z compatible with the Gamma(4) representation. Our study confirms the magnetic phase transitions reported already in a single crystal of TbFe0.5Mn0.5O3 and, in addition, reveals the presence of mixed magnetic domains. The ratio of these magnetic domains as a function of temperature is estimated from Rietveld refinement of neutron diffraction data. Indications of short-range magnetic correlations are present in the low-Q region of the neutron diffraction patterns at T < T-SR(Fe/Mn). These results should motivate further experimental work devoted to measure electric polarization and magnetocapacitance of TbFe0.5Mn0.5O3. (C) 2016 AIP Publishing LLC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The magnetic structures and the magnetic phase transitions in the Mn-doped orthoferrite TbFeO3 studied using neutron powder diffraction are reported. Magnetic phase transitions are identified at T-N(Fe/Mn) approximate to 295K where a paramagnetic-to-antiferromagnetic transition occurs in the Fe/Mn sublattice, T-SR(Fe/Mn) approximate to 26K where a spin-reorientation transition occurs in the Fe/Mn sublattice and T-N(R) approximate to 2K where Tb-ordering starts to manifest. At 295 K, the magnetic structure of the Fe/Mn sublattice in TbFe0.5Mn0.5O3 belongs to the irreducible representation Gamma(4) (G(x)A(y)F(z) or Pb'n'm). A mixed-domain structure of (Gamma(1) + Gamma(4)) is found at 250K which remains stable down to the spin re-orientation transition at T-SR(Fe/Mn) approximate to 26K. Below 26K and above 250 K, the majority phase (>80%) is that of Gamma(4). Below 10K the high-temperature phase Gamma(4) remains stable till 2K. At 2 K, Tb develops a magnetic moment value of 0.6(2) mu(B)/f.u. and orders long-range in F-z compatible with the Gamma(4) representation. Our study confirms the magnetic phase transitions reported already in a single crystal of TbFe0.5Mn0.5O3 and, in addition, reveals the presence of mixed magnetic domains. The ratio of these magnetic domains as a function of temperature is estimated from Rietveld refinement of neutron diffraction data. Indications of short-range magnetic correlations are present in the low-Q region of the neutron diffraction patterns at T < T-SR(Fe/Mn). These results should motivate further experimental work devoted to measure electric polarization and magnetocapacitance of TbFe0.5Mn0.5O3. (C) 2016 AIP Publishing LLC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The magnetic structures and the magnetic phase transitions in the Mn-doped orthoferrite TbFeO3 studied using neutron powder diffraction are reported. Magnetic phase transitions are identified at T-N(Fe/Mn) approximate to 295K where a paramagnetic-to-antiferromagnetic transition occurs in the Fe/Mn sublattice, T-SR(Fe/Mn) approximate to 26K where a spin-reorientation transition occurs in the Fe/Mn sublattice and T-N(R) approximate to 2K where Tb-ordering starts to manifest. At 295 K, the magnetic structure of the Fe/Mn sublattice in TbFe0.5Mn0.5O3 belongs to the irreducible representation Gamma(4) (G(x)A(y)F(z) or Pb'n'm). A mixed-domain structure of (Gamma(1) + Gamma(4)) is found at 250K which remains stable down to the spin re-orientation transition at T-SR(Fe/Mn) approximate to 26K. Below 26K and above 250 K, the majority phase (>80%) is that of Gamma(4). Below 10K the high-temperature phase Gamma(4) remains stable till 2K. At 2 K, Tb develops a magnetic moment value of 0.6(2) mu(B)/f.u. and orders long-range in F-z compatible with the Gamma(4) representation. Our study confirms the magnetic phase transitions reported already in a single crystal of TbFe0.5Mn0.5O3 and, in addition, reveals the presence of mixed magnetic domains. The ratio of these magnetic domains as a function of temperature is estimated from Rietveld refinement of neutron diffraction data. Indications of short-range magnetic correlations are present in the low-Q region of the neutron diffraction patterns at T < T-SR(Fe/Mn). These results should motivate further experimental work devoted to measure electric polarization and magnetocapacitance of TbFe0.5Mn0.5O3. (C) 2016 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A forest of quadtrees is a refinement of a quadtree data structure that is used to represent planar regions. A forest of quadtrees provides space savings over regular quadtrees by concentrating vital information. The paper presents some of the properties of a forest of quadtrees and studies the storage requirements for the case in which a single 2m × 2m region is equally likely to occur in any position within a 2n × 2n image. Space and time efficiency are investigated for the forest-of-quadtrees representation as compared with the quadtree representation for various cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functional dependencies in relational databases are investigated. Eight binary relations, viz., (1) dependency relation, (2) equipotence relation, (3) dissidence relation, (4) completion relation, and dual relations of each of them are described. Any one of these eight relations can be used to represent the functional dependencies in a database. Results from linear graph theory are found helpful in obtaining these representations. The dependency relation directly gives the functional dependencies. The equipotence relation specifies the dependencies in terms of attribute sets which functionally determine each other. The dissidence relation specifies the dependencies in terms of saturated sets in a very indirect way. Completion relation represents the functional dependencies as a function, the range of which turns out to be a lattice. Depletion relation which is the dual of the completion relation can also represent functional dependencies and similarly can the duals of dependency, equipotence, and dissidence relations. The class of depleted sets, which is the dual of saturated sets, is defined and used in the study of depletion relations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An efficient geometrical design rule checker is proposed, based on operations on quadtrees, which represent VLSI mask layouts. The time complexity of the design rule checker is O(N), where N is the number of polygons in the mask. A pseudoPascal description is provided of all the important algorithms for geometrical design rule verification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although incidence matrix representation has been used to analyze the Petri net based models of a system, it has the limitation that it does not preserve reflexive properties (i.e., the presence of selfloops) of Petri nets. But in many practical applications self-loops play very important roles. This paper proposes a new representation scheme for general Petri nets. This scheme defines a matrix called "reflexive incidence matrix (RIM) c which is a combination of two matrices, a "base matrix Cb,,, and a "power matrix CP." This scheme preserves the reflexive and other properties of the Petri nets. Through a detailed analysis it is shown that the proposed scheme requires less memory space and less processing time for answering commonly encountered net queries compared to other schemes. Algorithms to generate the RIM from the given net description and to decompose RIM into input and output function matrices are also given. The proposed Petri net representation scheme is very useful to model and analyze the systems having shared resources, chemical processes, network protocols, etc., and to evaluate the performance of asynchronous concurrent systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functional dependencies in relational databases are investigated. Eight binary relations, viz., (1) dependency relation, (2) equipotence relation, (3) dissidence relation, (4) completion relation, and dual relations of each of them are described. Any one of these eight relations can be used to represent the functional dependencies in a database. Results from linear graph theory are found helpful in obtaining these representations. The dependency relation directly gives the functional dependencies. The equipotence relation specifies the dependencies in terms of attribute sets which functionally determine each other. The dissidence relation specifies the dependencies in terms of saturated sets in a very indirect way. Completion relation represents the functional dependencies as a function, the range of which turns out to be a lattice. Depletion relation which is the dual of the completion relation can also represent functional dependencies and similarly can the duals of dependency, equipotence, and dissidence relations. The class of depleted sets, which is the dual of saturated sets, is defined and used in the study of depletion relations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The applicability of a formalism involving an exponential function of composition x1 in interpreting the thermodynamic properties of alloys has been studied. The excess integral and partial molar free energies of mixing are expressed as: $$\begin{gathered} \Delta F^{xs} = a_o x_1 (1 - x_1 )e^{bx_1 } \hfill \\ RTln\gamma _1 = a_o (1 - x_1 )^2 (1 + bx_1 )e^{bx_1 } \hfill \\ RTln\gamma _2 = a_o x_1^2 (1 - b + bx_1 )e^{bx_1 } \hfill \\ \end{gathered} $$ The equations are used in interpreting experimental data for several relatively weakly interacting binary systems. For the purpose of comparison, activity coefficients obtained by the subregular model and Krupkowski’s formalism have also been computed. The present equations may be considered to be convenient in describing the thermodynamic behavior of metallic solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The energy, position, and momentum eigenstates of a para-Bose oscillator system were considered in paper I. Here we consider the Bargmann or the analytic function description of the para-Bose system. This brings in, in a natural way, the coherent states ||z;alpha> defined as the eigenstates of the annihilation operator ?. The transformation functions relating this description to the energy, position, and momentum eigenstates are explicitly obtained. Possible resolution of the identity operator using coherent states is examined. A particular resolution contains two integrals, one containing the diagonal basis ||z;alpha><−z;alpha||. We briefly consider the normal and antinormal ordering of the operators and their diagonal and discrete diagonal coherent state approximations. The problem of constructing states with a minimum value of the product of the position and momentum uncertainties and the possible alpha dependence of this minimum value is considered. Journal of Mathematical Physics is copyrighted by The American Institute of Physics.