23 resultados para Hospital Provision, Poor Law Infirmaries, Entitlement, Irish Free State, Inter-war Healthcare
em Indian Institute of Science - Bangalore - Índia
Resumo:
The solubility limit of oxygen in liquid antimony has been measured by a novel isopiestic technique in the temperature range 995--1175 deg K. The results can be expressed by the equation log c = --5500/T + 3.754 ( plus/minus 0.04) with c in at.% O and T in deg K. The oxygen potential over Sb + O alloys equilibrium with Sb2O3 has been measured by a solid state cell using a fully stabilized CaO.ZrO2 electrolyte. The cell was designed to contain the Sb + Sb2O3 mixture in a closed volume, that the vaporization of the oxide can be minimized and true equilibrium attained. The Gibbs free energy of the reaction 2 Sb(s) + 3/2 O2 = Sb2O3(s) is Delta G deg = --719560 + 274.51 T( plus/minus 500) and Sb(l) + 3/2 O2 = Sb2O3(l), Delta G deg = --704711 + ( plus/minus 500) ( Delta G deg in J/mole, T in deg K). The combination of these results with Sieverts' law yields the standard free energy of solution of oxygen in liquid antimony according to the reaction 1/2 O2 = \O\Sb,at.% as Delta G deg = --129620 + 14.23 T ( plus/minus 950). The standard enthalopy and entropy of the solution of oxygen in Sb are compared with values for other metal- oyxgen systems, and with the standard enthalpies of formation of corresponding oxides. The resulting correlations permit the estimation of the standard free energy of solution of oxygen in pure metals for which experimental information is lacking. 24 ref.--AA
Resumo:
We develop iterative diffraction tomography algorithms, which are similar to the distorted Born algorithms, for inverting scattered intensity data. Within the Born approximation, the unknown scattered field is expressed as a multiplicative perturbation to the incident field. With this, the forward equation becomes stable, which helps us compute nearly oscillation-free solutions that have immediate bearing on the accuracy of the Jacobian computed for use in a deterministic Gauss-Newton (GN) reconstruction. However, since the data are inherently noisy and the sensitivity of measurement to refractive index away from the detectors is poor, we report a derivative-free evolutionary stochastic scheme, providing strictly additive updates in order to bridge the measurement-prediction misfit, to arrive at the refractive index distribution from intensity transport data. The superiority of the stochastic algorithm over the GN scheme for similar settings is demonstrated by the reconstruction of the refractive index profile from simulated and experimentally acquired intensity data. (C) 2014 Optical Society of America
Resumo:
The cobalt(II) tris(bipyridyl) complex ion encapsulated in zeolite-Y supercages exhibits a thermally driven interconversion between a low-spin and a high-spin state-a phenomenon not observed for this ion either in solid state or in solution. From a comparative study of the magnetism and optical spectroscopy of the encapsulated and unencapsulated complex ion, supported by molecular modeling, such spin behavior is shown to be intramolecular in origin. In the unencapsulated or free state, the [Co(bipy)(3)](2+) ion exhibits a marked trigonal prismatic distortion, but on encapsulation, the topology of the supercage forces it to adopt a near-octahedral geometry. An analysis using the angular overlap ligand field model with spectroscopically derived parameters shows that the geometry does indeed give rise to a low-spin ground state, and suggests a possible scenario for the spin state interconversion.
Resumo:
ABSTRACT: Infrared studies of synthetic alamethicin fragments and model peptides containing a-aminoisobutyric acid (Aib) have been carried out in solution. Tripeptides and larger fragments exhibit a strong tendency to form /3 turns, stabilized by 4 - 1 10-atom hydrogen bonds. Dipeptides show less well-defined structures, though C5 and C7 conformations are detectable. Conformational restrictions imposed by Aib residues result in these peptides populating a limited range of states. Integrated intensities of the hydrogen-bonded N-H stretching band can be used to quantitate the number of intramolecular hydrogen bonds. Predictions made from infrared data are in excellent agreement with nuclear magnetic resonance and X-ray diffraction studies. Assignments of the urethane and tertiary amide carbonyl groups in the free state have been made in model peptides. Shifts to lower frequency on hydrogen bonding are observed for the carbonyl groups. The 1-6 segment of alamethicin is shown to adopt a 310 helical structure stabilized by four intramolecular hydrogen bonds. The fragments Boc-Leu-Aib-Pro-Val-Aib-OMe (1 2-1 6) and Boc-Gly-Leu-Aib-Pro-Val-Aib-OMe (1 1-1 6) possess structures involving 4 - 1 and 5 - 1 hydrogen bonds. Supporting evidence for these structures is obtained from proton nuclear magnetic resonance studies.
Resumo:
The thermal decomposition of sodium azide has been studied in the temperature range 240–360°C in vacuum and under pressure of an inert gas, argon. The results show that the decomposition is partial 360°C. From the observations made in the present work, namely: (i) the decomposition is incomplete both under vacuum and inert gas; (ii) mass spectrometric studies do not reveal any decrease in the intensity of the background species, CO+2, CO+, H2O+, and (iii) sodium metal remains in the ‘free state’ as seen by the formation of a metallic mirror at temperatures above 300°C, it has been argued that the partial nature of decompostion is due to the confinement of the decomposition to intermosaic regions within the lattice.
Resumo:
Amidopyrine (1-phenyl-2,3-dimethyl-4-dimethylaminopyrazolone), C13HzvN30, a dimethylamino derivative of antipyrine and an important analgesic and antipyretic agent, crystallizes in the triclinic space group P1 with four molecules in a unit cell of dimensions a= 7.458 (5), b = 10.744 (5), c= 17.486 (15)/~,, e=98.6 (2),/~= 85.6 (3), y= 108-6 (2) . The structure was solved by direct methods and refined to an R value of 0.055 for 3706 photographically observed reflexions. The dimensions of the two crystallographically independent molecules are very nearly the same. The pyrazolone moiety in the molecule has dimensions comparable to those in antipyrine. Unlike antipyrine, the molecular dimensions of amidopyrine in the free state (the present structure) are close to those found in some of its hydrogenbonded complexes. Thus it appears that the presence of the dimethylamino group makes the molecule more resistant to changes in its dimensions resulting from molecular association. An attempt has also been made to correlate the polar nature of the pyrazolone moiety and the hybridization state of the hetero nitrogen atoms in antipyrine, amidopyrine and their complexes.
Resumo:
Peptidyl-tRNA hydrolase cleaves the ester bond between tRNA and the attached peptide in peptidyl-tRNA in order to avoid the toxicity resulting from its accumulation and to free the tRNA available for further rounds in protein synthesis. The structure of the enzyme from Mycobacteritan tuberculosis has been determined in three crystal forms. This structure and the structure of the enzyme frorn Escherichia coli in its crystal differ substantially on account of the binding of the C terminus of the E. coli enzyme to the peptide-binding site of a neighboring molecule in the crystal. A detailed examination of this difference led to an elucidation of the plasticity of the binding site of the enzyme. The peptide-binding site of the enzyme is a cleft between the body, of the molecule and a polypepticle Y stretch involving a loop and a helix. This stretch is in the open conformation when the enzyme is in the free state as in the crystals of M. tuberculosis peptidyl-tRNA hydrolase. Furthermore, there is no physical continuity between the tRNA and the peptide-binding sites. The molecule in the E. coli crystal mimics the peptide-bound enzyme molecule. The peptide stretch referred to earlier now closes on the bound peptide. Concurrently, a channel connecting the tRNA and the peptide-binding site opens primarily through the concerted movement of two residues. Thus, the crystal structure of M. tuberculosis peptidyl-tRNA hydrolase when compared with the crystal structure of the E. coli enzyme, leads to a model of structural changes associated with enzyme action on the basis of the plasticity of the molecule. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Peptidyl-tRNA hydrolase cleaves the ester bond between tRNA and the attached peptide in peptidyl-tRNA in order to avoid the toxicity resulting from its accumulation and to free the tRNA available for further rounds in protein synthesis. The structure of the enzyme from Mycobacteritan tuberculosis has been determined in three crystal forms. This structure and the structure of the enzyme frorn Escherichia coli in its crystal differ substantially on account of the binding of the C terminus of the E. coli enzyme to the peptide-binding site of a neighboring molecule in the crystal. A detailed examination of this difference led to an elucidation of the plasticity of the binding site of the enzyme. The peptide-binding site of the enzyme is a cleft between the body, of the molecule and a polypepticle Y stretch involving a loop and a helix. This stretch is in the open conformation when the enzyme is in the free state as in the crystals of M. tuberculosis peptidyl-tRNA hydrolase. Furthermore, there is no physical continuity between the tRNA and the peptide-binding sites. The molecule in the E. coli crystal mimics the peptide-bound enzyme molecule. The peptide stretch referred to earlier now closes on the bound peptide. Concurrently, a channel connecting the tRNA and the peptide-binding site opens primarily through the concerted movement of two residues. Thus, the crystal structure of M. tuberculosis peptidyl-tRNA hydrolase when compared with the crystal structure of the E. coli enzyme, leads to a model of structural changes associated with enzyme action on the basis of the plasticity of the molecule. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In order to study the elastic behaviour of matter when subjected to very large pressures, such as occur for example in the interior of the earth, and to provide an explanation for phenomena like earthquakes, it is essential to be able to calculate the values of the elastic constants of a substance under a state of large initial stress in terms of the elastic constants of a natural or stress-free state. An attempt has been made in this paper to derive expressions for these quantities for a substance of cubic symmetry on the basis of non-linear theory of elasticity and including up to cubic powers of the strain components in the strain energy function. A simple method of deriving them directly from the energy function itself has been indicated for any general case and the same has been applied to the case of hydrostatic compression. The notion of an effective elastic energy-the energy require to effect an infinitesimal deformation over a state of finite strain-has been introduced, the coefficients in this expression being the effective elastic constants. A separation of this effective energy function into normal co-ordinates has been given for the particular case of cubic symmetry and it has been pointed out, that when any of such coefficients in this normal form becomes negative, elastic instability will set in, with associated release of energy.
Resumo:
Proteases belonging to the M20 family are characterized by diverse substrate specificity and participate in several metabolic pathways. The Staphylococcus aureus metallopeptidase, Sapep, is a member of the aminoacylase-I/M20 protein family. This protein is a Mn2+-dependent dipeptidase. The crystal structure of this protein in the Mn2+-bound form and in the open, metal-free state suggests that large interdomain movements could potentially regulate the activity of this enzyme. We note that the extended inactive conformation is stabilized by a disulfide bond in the vicinity of the active site. Although these cysteines, Cys(155) and Cys(178), are not active site residues, the reduced form of this enzyme is substantially more active as a dipeptidase. These findings acquire further relevance given a recent observation that this enzyme is only active in methicillin-resistant S. aureus. The structural and biochemical features of this enzyme provide a template for the design of novel methicillin-resistant S. aureus-specific therapeutics.
Resumo:
The dynamics of hydrogen bonds among water molecules themselves and with the polar head groups (PHG) at a micellar surface have been investigated by long molecular dynamics simulations. The lifetime of the hydrogen bond between a PHG and a water molecule is found to be much longer than that between any two water molecules, and is likely to be a general feature of hydrophilic surfaces of organized assemblies. Analyses of individual water trajectories suggest that water molecules can remain bound to the micellar surface for more than 100 ps. The activation energy for such a transition from the bound to a free state for the water molecules is estimated to be about 3.5 kcal/mol.
Resumo:
This paper reports on the investigations of laminar free convection heat transfer from vertical cylinders and wires whose surface temperature varies along the height according to the relation TW - T∞ = Nxn. The set of boundary layer partial differential equations and the boundary conditions are transformed to a more amenable form and solved by the process of successive substitution. Numerical solutions of the first approximated equations (two-point nonlinear boundary value type of ordinary differential equations) bring about the major contribution to the problem (about 95%), as seen from the solutions of higher approximations. The results reduce to those for the isothermal case when n=0. Criteria for classifying the cylinders into three broad categories, viz., short cylinders, long cylinders and wires, have been developed. For all values of n the same criteria hold. Heat transfer correlations obtained for short cylinders (which coincide with those of flat plates) are checked with those available in the literature. Heat transfer and fluid flow correlations are developed for all the regimes.
Resumo:
Numerical results are presented for the free-convection boundary-layer equations of the Ostwald de-Waele non-Newtonian power-law type fluids near a three-dimensional (3-D) stagnation point of attachment on an isothermal surface. The existence of dual solutions that are three-dimensional in nature have been verified by means of a numerical procedure. An asymptotic solution for very large Prandtl numbers has also been derived. Solutions are presented for a range of values of the geometric curvature parameter c, the power-law index n, and the Prandtl number Pr.
Resumo:
The topography of the free energy landscape in phase space of a dense hard-sphere system characterized by a discretized free energy functional of the Ramakishnan-Yussouff form is investigated numerically using a specially devised Monte Carlo procedure. We locate a considerable number of glassy local minima of the free energy and analyze the distributions of the free energy at a minimum and an appropriately defined phase-space "distance" between different minima. We find evidence for the existence of pairs of closely related glassy minima("two-level systems"). We also investigate the way the system makes transitions as it moves from the basin of attraction of a minimum to that of another one after a start under nonequilibrium conditions. This allows us to determine the effective height of free energy barriers that separate a glassy minimum from the others. The dependence of the height of free energy barriers on the density is investigated in detail. The general appearance of the free energy landscape resembles that of a putting green: relatively deep minima separated by a fairly flat structure. We discuss the connection of our results with the Vogel-Fulcher law and relate our observations to other work on the glass transition.
Resumo:
Investigation on laminar free convection heat transfer from vertical cylinders and wires having a surface temperature variation of the form TW - T∞ = M emx are presented. As in Part I for power law surface temperature variation, the axisymmetric boundary layer equations of mass, momentum and energy are transformed to more convenient forms and solved numerically. The second approximation refines the results of the first upto a maximum of only 2%. Analysis of the results indicates that cylinders can be classified into the same three categories as in Part I, namely, short cylinders, long cylinders, and wires, heat transfer and fluid flow correlations being developed for each case.