5 resultados para Hipertensao arterial

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mathematical model for pulsatile flow in a partially occluded tube is presented. The problem has applications in studying the effects of blood flow characteristics on atherosclerotic development. The model brings out the importance of the pulsatility of blood flow on separation and the stress distribution. The results obtained show fairly good agreement with the available experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Closed-form solutions are presented for approximate equations governing the pulsatile flow of blood through models of mild axisymmetric arterial stenosis, taking into account the effect of arterial distensibility. Results indicate the existence of back-flow regions and the phenomenon of flow-reversal in the cross-sections. The effects of pulsatility of flow and elasticity of vessel wall for arterial blood flow through stenosed vessels are determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arteries are heterogeneous, composite structures that undergo large cyclic deformations during blood transport. Presence, build-up and consequent rupture of blockages in blood vessels, called atherosclerotic plaques, lead to disruption in the blood flow that can eventually be fatal. Abnormal lipid profile and hypertension are the main risk factors for plaque progression. Treatments span from pharmacological methods, to minimally invasive balloon angioplasty and stent procedures, and finally to surgical alternatives. There is a need to understand arterial disease progression and devise methods to detect, control, treat and manage arterial disease through early intervention. Local delivery through drug eluting stents also provide an attractive option for maintaining vessel integrity and restoring blood flow while releasing controlled amount of drug to reduce and alleviate symptoms. Development of drug eluting stents is hence interesting albeit challenging because it requires an integration of knowledge of mechanical properties with material transport of drug through the arterial wall to produce a desired biochemical effect. Although experimental models are useful in studying such complex multivariate phenomena, numerical models of mass transport in the vessel have proved immensely useful to understand and delineate complex interactions between chemical species, physical parameters and biological variables. The goals of this review are to summarize literature based on studies of mass transport involving low density lipoproteins in the arterial wall. We also discuss numerical models of drug elution from stents in layered and porous arterial walls that provide a unique platform that can be exploited for the design of novel drug eluting stents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a blood pressure evaluation methodology by recording the radial arterial pulse waveform in real time using a fiber Bragg grating pulse device (FBGPD). Here, the pressure responses of the arterial pulse in the form of beat-to-beat pulse amplitude and arterial diametrical variations are monitored. Particularly, the unique signatures of pulse pressure variations have been recorded in the arterial pulse waveform, which indicate the systolic and diastolic blood pressure while the patient is subjected to the sphygmomanometric blood pressure examination. The proposed method of blood pressure evaluation using FBGPD has been validated with the auscultatory method of detecting the acoustic pulses (Korotkoff sounds) by an electronic stethoscope. (C) 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, we report a novel, in vivo, noninvasive technique to determine radial arterial compliance using the radial arterial pressure pulse waveform (RAPPW) acquired by fiber Bragg grating pulse recorder (FBGPR). The radial arterial compliance of the subject can be measured during sphygmomanometric examination by the unique signatures of arterial diametrical variations and the beat-to-beat pulse pressure acquired simultaneously from the RAPPW recorded using FBGPR. This proposed technique has been validated against the radial arterial diametrical measurements obtained from the color Doppler ultrasound. Two distinct trials have been illustrated in this work and the results from both techniques have been found to be in good agreement with each other.