24 resultados para HIGH-ALTITUDE EXPOSURE

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The seasonality and mutual dependence of aerosol optical properties and cloud condensation nuclei (CCN) activity under varying meteorological conditions at the high-altitude Nainital site (2km) in the Indo-Gangetic Plains were examined using nearly year-round measurements (June 2011 to March 2012) at the Atmospheric Radiation Measurement mobile facility as part of the Regional Aerosol Warming Experiment-Ganges Valley Aerosol Experiment of the Indian Space Research Organization and the U.S. Department of Energy. The results from collocated measurements provided enhanced aerosol scattering and absorption coefficients, CCN concentrations, and total condensation nuclei concentrations during the dry autumn and winter months. The CCN concentration (at a supersaturation of 0.46) was higher during the periods of high aerosol absorption (single scattering albedo (SSA)<0.80) than during the periods of high aerosol scattering (SSA>0.85), indicating that the aerosol composition seasonally changes and influences the CCN activity. The monthly mean CCN activation ratio (at a supersaturation of 0.46) was highest (>0.7) in late autumn (November); this finding is attributed to the contribution of biomass-burning aerosols to CCN formation at high supersaturation conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stable carbon isotope ratios of peats dated (by C-14) back to 40 kyr BP from the montane region (> 1800 m asl) of the Nilgiris, southern India, reflect changes in the relative proportions of C3 and C4 plant types, which are influenced by soil moisture (and hence monsoonal precipitation), From prior to 40 kyr BP until 28 kyr BP, a general decline in delta(13)C values from about - 14 per mil to - 19 per mil suggests increased dominance of C3 plants concurrent with increasingly moist conditions, During 28-18 kyr BP there seems relatively little change with delta(13) C of - 19 to - 18 per mil, At about 16 kyr BP a sharp reversal in delta(13)C to a peak of - 14.7 per mil indicates a clear predominance of C4 vegetation associated with arid conditions, possibly during or just after the Last Glacial Maximum, A moist phase at about 9 kyr BP (the Holocene Optimum) with dominance of C3 vegetation type is observed, while arid conditions are re-established during 5-2 kyr BP with an overall dominance of C4 vegetation, New data do not support the occurrence of a moist phase coinciding with the Mediaeval Warm Period (at 0.6 kyr BP) as suggested earlier, Overall, the climate and vegetation in the high altitude regions of the southern Indian tropics seem to have responded to past global climatic changes, and this is consistent with other evidences from India and other tropical regions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

STABLE-ISOTOPE ratios of carbon in soils or lake sediments1-3 and of oxygen and hydrogen in peats4,5 have been found to reflect past moisture variations and hence to provide valuable palaeoclimate records. Previous applications of the technique to peat have been restricted to temperate regions, largely because tropical climate variations are less pronounced, making them harder to resolve. Here we present a deltaC-13 record spanning the past 20 kyr from peats in the Nilgiri hills, southern India. Because the site is at high altitude (>2,000 m above sea level), it is possible to resolve a clear climate signal. We observe the key climate shifts that are already known to have occurred during the last glacial maximum (18 kyr ago) and the subsequent deglaciation. In addition, we observe an arid phase from 6 to 3.5 kyr ago, and a short, wet phase about 600 years ago. The latter appears to correspond to the Mediaeval Warm Period, which previously was believed to be confined to Europe and North America6,7. Our results therefore suggest that this event may have extended over the entire Northern Hemisphere.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The influences of the springtime northern Indian biomass burning are shown for the first time over the central Himalayas by using three years (2007-2009) of surface and space based observations along with a radiative transfer model. Near-surface ozone, black carbon (BC), spectral aerosol optical depths (AODs) and the meteorological parameters are measured at a high altitude site Nainital (29.37 degrees N, 79.45 degrees E, 1958 m amsl) located in the central Himalayas. The satellite observations include the MODIS derived fire counts and AOD (0.55 mu m), and OMI derived tropospheric column NO(2), ultraviolet aerosol index and single scattering albedo. MODIS fire counts and BC observations are used to identify the fire-impacted periods (372 h during 2007-2009) and hence the induced enhancements in surface BC, AOD (0.5 mu m) and ozone are estimated to be 1802 ng m(-3) (similar to 145%), 0.3 (similar to 150%) and 19 ppbv (similar to 34%) respectively. Large enhancements (53-100%) are also seen in the satellite derived parameters over a 2 degrees x 2 degrees region around Nainital. The present analysis highlights the northern Indian biomass burning induced cooling at the surface (-27 W m(-2)) and top of the atmosphere (-8 W m(-2)) in the lesser polluted high altitude regions of the central Himalayas. This cooling leads to an additional atmospheric warming of 19 W m(-2) and increases the lower atmospheric heating rate by 0.8 K day(-1). These biomass burning induced changes over the central Himalayan atmosphere during spring may also lead to enhanced short-wave absorption above clouds and might have an impact on the monsoonal rainfall.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nuclear electro-magnetic pulse (NEMP) simulators which are used in the simulation of transient electromagnetic fields due to a high altitude nuclear detonation are generally excited with a double exponential high voltage pulse. This results in a current distribution on the wires of the simulator and hence a transient electric field in the working volume of the simulator where the test object is kept. It is found that for the simulator under study, the current distribution is non-uniform and so is the field distribution along the width of the simulator in the working volume. To make the current distribution uniform, several methods have been suggested and the results of these methods are analyzed and suitable conclusions are arrived at from those results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Surface oxidation of La, Ce, Sm and Tb metals has been investigated by He(II) ultraviolet photoelectron spectroscopy (u.p.s.) and X-ray photoelectron spectroscopy (X.p.s.). Oxidation of La gives rise to La2O3 on the surface. While Ce2O3 appears to be the stable oxide on the surface, we find evidence for formation of CeO2 at high oxygen exposure. Valence band of Sm clearly shows the presence of both divalent and trivalent states due to interconfigurational fluctuation. Exposure of Sm to oxygen first depletes the divalent Sm at the surface. While Sm2O3 is the stable oxide on the surface of Sm, Tb2O3 is the stable oxide on the surface of Tb (and not any of the higher oxides).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Systematic observations of light detection and ranging (LIDAR) to detect elevated aerosol layer were carried out at Manora Peak (29.4 degrees N, 79.5 degrees E, similar to 1960 m a.s.l), Nainital, in the Central Himalayas during January-May 2008. In spite of being a remote, high-altitude site, an elevated aerosol layer is observed quite frequently in the altitude range of 2460-4460 m a.s.l with a width of similar to 2 km during the observation period. We compare these profiles with the vertical profiles observed over Gadanki (13.5 degrees N, 79.2 degrees E, similar to 370 m a.s.l), a tropical station, where no such elevated aerosol layer was found. Further, there is a steady increase in aerosol optical depth (AOD) from January (winter) to May (summer) from 0.043 to 0.742, respectively, at Manora Peak, indicating aerosol loading in the atmosphere. Our observations show north-westerly winds indicating the convective lifting of aerosols from far-off regions followed by horizontal long-range transport. The presence of strongly absorbing and scattering aerosols in the elevated layer resulted in a relatively large diurnal mean aerosol surface radiative forcing efficiency (forcing per unit optical depth) of about -65 and -63 W m(-2) and the corresponding mean reduction in the observed net solar flux at the surface (cooling effect) is as high as -22 and -30 W m(-2). The reduction of radiation will heat the lower atmosphere by redistributing the radiation with heating rate of 1.13 and 1.31 K day(-1) for April and May 2008, respectively, in the lower atmosphere.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work aims at asymptotically accurate dimensional reduction of non-linear multi-functional film-fabric laminates having specific application in design of envelopes for High Altitude Airships (HAA). The film-fabric laminate for airship envelope consists of a woven fabric core coated with thin films on each face. These films provide UV protection and Helium leakage prevention, while the core provides required structural strength. This problem is both geometrically and materially non-linear. To incorporate the geometric non-linearity, generalized warping functions are used and finite deformations are allowed. The material non-linearity is handled by using hyper-elastic material models for each layer. The development begins with three-dimensional (3-D) nonlinear elasticity and mathematically splits the analysis into a one-dimensional through-the-thickness analysis and a two-dimensional (2-D) plate analysis. The through-the-thickness analysis provides the 2-D constitutive law which is then given as an input to the 2-D reference surface analysis. The dimensional reduction is carried out using Variational Asymptotic Method (VAM) for moderate strains and very small thickness-to-wavelength ratio. It features the identification and utilization of additional small parameters such as ratio of thicknesses and stiffness coefficients of core and films. Closed form analytical expressions for warping functions and 2-D constitutive law of the film-fabric laminate are obtained.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The genus Glyphochloa (Poaceae: Panicoideae: Andropogoneae: Rottboellinae) is endemic to peninsular India and is distributed on lateritic plateaus of low and high altitude in and around Western Ghats and the Malabar Coast. The genus presumably originated and diversified in the Western Ghats. Species relationships in the genus Glyphochloa were deduced here based on molecular phylogenies inferred using nuclear ribosomal ITS sequences and plastid intergenic spacer regions (atpB-rbcL, trnT-trnL, trnL-trnF), and new observations were made of spikelet morphology, caryopsis morphology and meiotic chromosome counts. We observed two distinct clades of Glyphochloa s.l. One of these (group I') includes Ophiuros bombaiensis, and is characterized by a single-awned lower glume and a base chromosome number of 6; it grows in low elevation coastal areas. The other clade (group II') has a double-awned lower glume, a base chromosome number of 7, and is restricted to higher elevation lateritic plateaus; G. ratnagirica may belong to the group II clade, or may be a third distinct lineage in the genus. A sister-group relationship between group I and II taxa (with or without G. ratnagirica) is not well supported, although the genus is recovered as monophyletic in shortest trees inferred using ITS or concatenated plastid data. We present a key to species of Glyphochloa and make a new combination for O. bombaiensis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

ZrB2 with different amounts of B4C additive (0-5 wt.%) has been hot pressed at 2000 degrees C and 25 MPa for 1 h. By addition of B4C, density as well as micro-hardness increased. For lower B4C content (0.5 and 1 wt.%), hot pressed ZrB2 shows considerable improvement in flexural strength after exposure in air at 1000 C for 5 h, while higher B4C content (3 and 5 wt.%) leads to marginal or no improvement. For any content of B4C, flexural strength after exposure in air at 1500 degrees C for 5 h is lower than as-hot pressed ZrB2. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Residual strength (room temperature strength after exposure in air at high temperatures) of hot pressed ZrB2-SiC composites was evaluated as function of SiC contents (10-30 vol%) as well as exposure temperatures for 5 h (1000-1700 degrees C). Multilayer oxide scale structures were found after exposures. The composition and thickness of these multilayered oxide scale structure was dependent on exposure temperature and SiC contents in composites. After exposure to 1000 degrees C for 5 h, the residual strength of ZrB2-SiC composites improved by nearly 60% compared to the as-hot pressed composites with 20 and 30 vol% SiC. On the other hand, the residual strength of these composites remained unchanged after 1500 degrees C for 5 h. A drastic degradation in residual strength was observed in composites with 20 and 30 vol% SiC after exposure to 1700 degrees C for 5 h in ZrB2-SiC. An attempt was made to correlate the microstructural changes and oxide scales with residual strength with respect to variation in SiC content and temperature of expsoure. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The industrial production and commercial applications of titanium dioxide nanoparticles have increased considerably in recent times, which has increased the probability of environmental contamination with these agents and their adverse effects on living systems. This study was designed to assess the genotoxicity potential of TiO2 NPs at high exposure concentrations, its bio-uptake, and the oxidative stress it generated, a recognised cause of genotoxicity. Allium cepa root tips were treated with TiO2 NP dispersions at four different concentrations (12.5, 25, 50, 100 mu g/mL). A dose dependant decrease in the mitotic index (69 to 21) and an increase in the number of distinctive chromosomal aberrations were observed. Optical, fluorescence and confocal laser scanning microscopy revealed chromosomal aberrations, including chromosomal breaks and sticky, multipolar, and laggard chromosomes, and micronucleus formation. The chromosomal aberrations and DNA damage were also validated by the comet assay. The bio-uptake of TiO2 in particulate form was the key cause of reactive oxygen species generation, which in turn was probably the cause of the DNA aberrations and genotoxicity observed in this study.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present study experimentally evaluates the performance of control (standard cylinder specimen), damaged (mechanical loading after thermal exposure) and repaired / retrofitted normal plain concrete cylinders using different repair schemes such as on use of FRP wraps, Geo-polymers, etc., to restore the capacity of damaged structural concrete elements. The control-companion specimen in the series provides the reference frame against which both, specimen damage levels were quantified and the benefits of a specimen repaired subsequent to damage were assessed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrogen plasma exposure (NPE) effects on indium doped bulk n-CdTe are reported here. Excellent rectifying characteristics of Au/n-CdTe Schottky diodes, with an increase in the barrier height, and large reverse breakdown voltages are observed after the plasma exposure. Surface damage is found to be absent in the plasma exposed samples. The breakdown mechanism of the heavily doped Schottky diodes is found to shift from the Zener to avalanche after the nitrogen plasma exposure, pointing to a change in the doping close to the surface which was also verified by C-V measurements. The thermal stability of the plasma exposure process is seen up to a temperature of 350 degrees C, thereby enabling the high temperature processing of the samples for device fabrication. The characteristics of the NPE diodes are stable over a year implying excellent diode quality. A plausible model based on Fermi level pinning by acceptor-like states created by plasma exposure is proposed to explain the observations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-Tc superconducting thin films can be deposited and processed by pulsed and CW lasers, and a respectable materials technology for the Y-Ba-Cu-O superconductor is rapidly emerging. The pulsed laser deposition technique is simple because it produces films with compositions nearly identical to those of the target pellets. A larger variety of substrates can be used, compared to other deposition technologies, because of the relatively low temperature requirements. The laser deposition mechanism has been investigated. As-deposited superconducting films, epitaxial films with smooth surfaces, and multilayer structures with abrupt interfaces have been produced. The electrical transport properties can be changed locally using a focused argon-ion laser by modifying the oxygen stoichiometry. This laser writing can be erased by room-temperature exposure to an oxygen plasma. Other laser patterning methods such as material removal, melt-quench, and direct pattern transfer are being developed.