299 resultados para HEAT-CONDUCTION

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

MANY TRANSPORprTo cesses occur in nature and in industrial applications in which the transfer of heat is governed by the process of natural convection. Natural convection arises in fluids when the temperature changes cause density variations leading to buoyancy forces. An excellent review of natural convection flows has been given by Ede [I]. Recently, Minkowycz and Sparrow [2, 31, Cebeci [4], and Aziz and Na [S] have studied the steady, laminar, incompressible, natural convection flow over a vertical cylinder using a local nonsimilarity method, a finite-difference scheme, and an improved perturbation method, respectively. However, they did not take into account the effect ofaxial heat conduction for small Prandtl number. It is known that the axial heat conductioneffect becomesimportant for low-Prandtl-number fluids such as a liquid metal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analytical solution of a 2-dimensional problem of solidification of a superheated liquid in a semi-infinite mould has been studied in this paper. On the boundary, the prescribed temperature is such that the solidification starts simultaneously at all points of the boundary. Results are also given for the 2-dimensional ablation problem. The solution of the heat conduction equation has been obtained in terms of multiple Laplace integrals involving suitable unknown fictitious initial temperatures. These fictitious initial temperatures have interesting physical interpretations. By choosing suitable series expansions for fictitious initial temperatures and moving interface boundary, the unknown quantities can be determined. Solidification thickness has been calculated for short time and effect of parameters on the solidification thickness has been shown with the help of graphs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analytical short time solution of moving boundary in heat conduction in a cylindrical mould under prescribed flux boundary condition has been studied in this paper. Partial differential equations are converted to integro-differential equations. These integro-differential equations which are coupled have been solved analytically for short time by choosing suitable series expansions for the unknown quantitities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal diffusivity and conductivity of hot pressed ZrB2 with different amounts of B4C (0-5 wt%) and ZrB2-SiC composites (10-30 vol% SiC) were investigated experimentally over a wide range of temperature (25-1500 degrees C). Both thermal diffusivity and thermal conductivity were found to decrease with increase in temperature for all the hot pressed ZrB2 and ZrB2-SiC composites. At around 200 degrees C, thermal conductivity of ZrB2-SiC composites was found to be composition independent. Thermal conductivity of ZrB2-SiC composites was also correlated with theoretical predictions of the Maxwell Eucken relation. The dominated mechanisms of heat transport for all hot pressed ZrB2 and ZrB2-SiC composites at room temperature were confirmed by Wiedemann Franz analysis by using measured electrical conductivity of these materials at room temperature. It was found that electronic thermal conductivity dominated for all monolithic ZrB2 whereas the phonon contribution to thermal conductivity increased with SiC contents for ZrB2-SiC composites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a survey on different numerical interpolation schemes used for two-phase transient heat conduction problems in the context of interface capturing phase-field methods. Examples are general transport problems in the context of diffuse interface methods with a non-equal heat conductivity in normal and tangential directions to the interface. We extend the tonsorial approach recently published by Nicoli M et al (2011 Phys. Rev. E 84 1-6) to the general three-dimensional (3D) transient evolution equations. Validations for one-dimensional, two-dimensional and 3D transient test cases are provided, and the results are in good agreement with analytical and numerical reference solutions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A swarm is a temporary structure formed when several thousand honey bees leave their hive and settle on some object such as the branch of a tree. They remain in this position until a suitable site for a new home is located by the scout bees. A continuum model based on heat conduction and heat generation is used to predict temperature profiles in swarms. Since internal convection is neglected, the model is applicable only at low values of the ambient temperature T-a. Guided by the experimental observations of Heinrich (1981a-c, J. Exp. Biol. 91, 25-55; Science 212, 565-566; Sci. Am. 244, 147-160), the analysis is carried out mainly for non-spherical swarms. The effective thermal conductivity is estimated using the data of Heinrich (1981a, J. Exp. Biol. 91, 25-55) for dead bees. For T-a = 5 and 9 degrees C, results based on a modified version of the heat generation function due to Southwick (1991, The Behaviour and Physiology of Bees, PP 28-47. C.A.B. International, London) are in reasonable agreement with measurements. Results obtained with the heat generation function of Myerscough (1993, J. Theor. Biol. 162, 381-393) are qualitatively similar to those obtained with Southwick's function, but the error is more in the former case. The results suggest that the bees near the periphery generate more heat than those near the core, in accord with the conjecture of Heinrich (1981c, Sci. Am. 244, 147-160). On the other hand, for T-a = 5 degrees C, the heat generation function of Omholt and Lonvik (1986, J. Theor. Biol. 120, 447-456) leads to a trivial steady state where the entire swarm is at the ambient temperature. Therefore an acceptable heat generation function must result in a steady state which is both non-trivial and stable with respect to small perturbations. Omholt and Lonvik's function satisfies the first requirement, but not the second. For T-a = 15 degrees C, there is a considerable difference between predicted and measured values, probably due to the neglect of internal convection in the model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High frequency, miniature, pulse tube cryocoolers are extensively used in space applications because of their simplicity. Parametric studies of inertance type pulse tube cooler are performed with different length-to-diameter ratios of the pulse tube with the help of the FLUENT (R) package. The local thermal non-equilibrium of the gas and the matrix is taken into account for the modeling of porous zones, in addition to the wall thickness of the components. Dynamic characteristics and the actual mechanism of energy transfer in pulse are examined with the help of the pulse tube wall time constant. The heat interaction between pulse tube wall and the oscillating gas, leading to surface heat pumping, is quantified. The axial heat conduction is found to reduce the performance of the pulse tube refrigerator. The thermal non-equilibrium predicts a higher cold heat exchanger temperature compared to thermal equilibrium. The pressure drop through the porous medium has a strong non-linear effect due to the dominating influence of Forchheimer term over that of the linear Darcy term at high operating frequencies. The phase angle relationships among the pressure, temperature and the mass flow rate in the porous zones are also important in determining the performance of pulse tuberefrigerator.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hybrid frictional-kinetic equations are used to predict the velocity, grain temperature, and stress fields in hoppers. A suitable choice of dimensionless variables permits the pseudo-thermal energy balance to be decoupled from the momentum balance. These balances contain a small parameter, which is analogous to a reciprocal Reynolds number. Hence an approximate semi-analytical solution is constructed using perturbation methods. The energy balance is solved using the method of matched asymptotic expansions. The effect of heat conduction is confined to a very thin boundary layer near the exit, where it causes a marginal change in the temperature. Outside this layer, the temperature T increases rapidly as the radial coordinate r decreases. In particular, the conduction-free energy balance yields an asymptotic solution, valid for small values of r, of the form T proportional r-4. There is a corresponding increase in the kinetic stresses, which attain their maximum values at the hopper exit. The momentum balance is solved by a regular perturbation method. The contribution of the kinetic stresses is important only in a small region near the exit, where the frictional stresses tend to zero. Therefore, the discharge rate is only about 2.3% lower than the frictional value, for typical parameter values. As in the frictional case, the discharge rate for deep hoppers is found to be independent of the head of material.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider three dimensional finite element computations of thermoelastic damping ratios of arbitrary bodies using Zener's approach. In our small-damping formulation, unlike existing fully coupled formulations, the calculation is split into three smaller parts. Of these, the first sub-calculation involves routine undamped modal analysis using ANSYS. The second sub-calculation takes the mode shape, and solves on the same mesh a periodic heat conduction problem. Finally, the damping coefficient is a volume integral, evaluated elementwise. In the only other decoupled three dimensional computation of thermoelastic damping reported in the literature, the heat conduction problem is solved much less efficiently, using a modal expansion. We provide numerical examples using some beam-like geometries, for which Zener's and similar formulas are valid. Among these we examine tapered beams, including the limiting case of a sharp tip. The latter's higher-mode damping ratios dramatically exceed those of a comparable uniform beam.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is observed that the daily mean temperature of the soil is linear with depth and the variation of the temperature is sinusoidal with a period of a day. Based on these observations the one-dimensional heat conduction equation for the soil can be solved which gives the amplitude and phase variation of the temperature wave with depth. Given the temperature data at three levels below the surface, the amplitude and phase variation and hence the surface temperature variation over the day are estimated. The daily mean temperature of the surface is estimated from linear extrapolation of the daily means at the three levels below the surface. Estimated values of soil thermal diffusivity show a subtantial change after sudden and heavy rains.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The oscillating flow and temperature field in an open tube subjected to cryogenic temperature at the cold end and ambient temperature at the hot end is studied numerically. The flow is driven by a time-wise sinusoidally varying pressure at the cold end. The conjugate problem takes into account the interaction of oscillatory flow with the heat conduction in the tube wall. The full set of compressible flow equations with axisymmetry assumption are solved with a pressure correction algorithm. Parametric studies are conducted with frequencies of 5-15 Hz, with one end maintained at 100 K and other end at 300 K. The flow and temperature distributions and the cooldown characteristics are obtained. The frequency and pressure amplitude have negligible effect on the time averaged Nusselt number. Pressure amplitude is an important factor determining the enthalpy flow through the solid wall. The frequency of operation has considerable effect on penetration of temperature into the tube. The density variation has strong influence on property profiles during cooldown. The present study is expected to be of interest in applications such as pulse tube refrigerators and other cryocoolers, where oscillatory flows occur in open tubes. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The 1D electric field and heat-conduction equations are solved for a slab where the dielectric properties vary spatially in the sample. Series solutions to the electric field are obtained for systems where the spatial variation in the dielectric properties can be expressed as polynomials. The series solution is used to obtain electric-field distributions for a binary oil-water system where the dielectric properties are assumed to vary linearly within the sample. Using the finite-element method temperature distributions are computed in a three-phase oil, water and rock system where the dielectric properties vary due to the changing oil saturation in the rock. Temperature distributions predicted using a linear variation in the dielectric properties are compared with those obtained using the exact nonlinear variation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of natural convection on the oscillatory flow in an open-ended pipe driven by a timewise sinusoidally varying pressure at one end and subjected to an ambient-to-cryogenic temperature difference across the ends, is numerically studied. Conjugate effects arising out of the interaction of oscillatory flow with heat conduction in the pipe wall are taken into account by considering a finite thickness wall with an insulated exterior surface. Two cases, namely, one with natural convection acting downwards and the other, with natural convection acting upwards, are considered. The full set of compressible flow equations with axissymmetry are solved using a pressure correction algorithm. Parametric studies are conducted with frequencies in the range 5-15 Hz for an end-to-end temperature difference of 200 and 50 K. Results are obtained for the variation of velocity, temperature. Nusselt number and the phase relationship between mass flow rate and temperature. It is found that the Rayleigh number has a minimal effect on the time averaged Nusselt number and phase angle. However, it does influence the local variation of velocity and Nusselt number over one cycle. The natural convection and pressure amplitude have influence on the energy flow through the gas and solid. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Theterahertz (THz) propagation in real tissues causes heating as with any other electromagnetic radiation propagation. A finite-element (FE) model that provides numerical solutions to the heat conduction equation coupled with realistic models of tissues is employed in this study to compute the temperature raise due to THz propagation. The results indicate that the temperature raise is dependent on the tissue type and is highly localized. The developed FE model was validated through obtaining solutions for the steady-state case and showing that they were in good agreement with the analytical solutions. These types of models can also enable computation of specific absorption rates, which are very critical in planning/setting up experiments involving biological tissues.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present study an analytical model has been presented to describe the transient temperature distribution and advancement of the thermal front generated due to the reinjection of heat depleted water in a heterogeneous geothermal reservoir. One dimensional heat transport equation in porous media with advection and longitudinal heat conduction has been solved analytically using Laplace transform technique in a semi infinite medium. The heterogeneity of the porous medium is expressed by the spatial variation of the flow velocity and the longitudinal effective thermal conductivity of the medium. A simpler solution is also derived afterwards neglecting the longitudinal conduction depending on the situation where the contribution to the transient heat transport phenomenon in the porous media is negligible. Solution for a homogeneous aquifer with constant values of the rock and fluid parameters is also derived with an aim to compare the results with that of the heterogeneous one. The effect of some of the parameters involved, on the transient heat transport phenomenon is assessed by observing the variation of the results with different magnitudes of those parameters. Results prove the heterogeneity of the medium, the flow velocity and the longitudinal conductivity to have great influence and porosity to have negligible effect on the transient temperature distribution. (C) 2013 Elsevier Inc. All rights reserved.