16 resultados para Gertrude Stein
em Indian Institute of Science - Bangalore - Índia
Resumo:
We address the problem of speech enhancement using a risk- estimation approach. In particular, we propose the use the Stein’s unbiased risk estimator (SURE) for solving the problem. The need for a suitable finite-sample risk estimator arises because the actual risks invariably depend on the unknown ground truth. We consider the popular mean-squared error (MSE) criterion first, and then compare it against the perceptually-motivated Itakura-Saito (IS) distortion, by deriving unbiased estimators of the corresponding risks. We use a generalized SURE (GSURE) development, recently proposed by Eldar for MSE. We consider dependent observation models from the exponential family with an additive noise model,and derive an unbiased estimator for the risk corresponding to the IS distortion, which is non-quadratic. This serves to address the speech enhancement problem in a more general setting. Experimental results illustrate that the IS metric is efficient in suppressing musical noise, which affects the MSE-enhanced speech. However, in terms of global signal-to-noise ratio (SNR), the minimum MSE solution gives better results.
Resumo:
Chen et al. [1] give a list of quasi-cyclic (2m,m) codes which have the largest minimum distance of any quasi-cyclic code, for various values ofm. We present the weight distribution of these codes. It will be seen that many of the codes found by Chen et al. [1] are equivalent in the sense of having identical weight distributions.
Resumo:
The incidence matrix of a (v, k, λ) configuration is used to construct a (2v, v) and a (2v + 2, v + 1) self-dual code. If the incidence matrix is a circulant, the codes obtained are quasi-cyclic and extended quasi-cyclic, respectively. The weight distributions of some codes of this type are obtained.
Resumo:
A multiplier theorem for the sublaplacian on the Heisenberg group is proved using Littlewood-Paley-Stein theory of g-functions.
Resumo:
The frequently observed lopsidedness of the distribution of stars and gas in disc galaxies is still considered as a major problem in galaxy dynamics. It is even discussed as an imprint of the formation history of discs and the evolution of baryons in dark matter haloes. Here, we analyse a selected sample of 70 galaxies from the Westerbork Hi Survey of Spiral and Irregular Galaxies. The Hi data allow us to follow the morphology and the kinematics out to very large radii. In the present paper, we present the rotation curves and study the kinematic asymmetry. We extract the rotation curves of the receding and approaching sides separately and show that the kinematic behaviour of disc galaxies can be classified into five different types: symmetric velocity fields where the rotation curves of the receding and approaching sides are almost identical; global distortions where the rotation velocities of the receding and approaching sides have an offset that is constant with radius; local distortions leading to large deviations in the inner and negligible deviations in the outer parts (and vice versa); and distortions that divide the galaxies into two kinematic systems that are visible in terms of the different behaviour of the rotation curves of the receding and approaching sides, which leads to a crossing and a change in side. The kinematic lopsidedness is measured from the maximum rotation velocities, averaged over the plateau of the rotation curves. This gives a good estimate of the global lopsidedness in the outer parts of the sample galaxies. We find that the mean value of the perturbation parameter denoting the lopsided potential as obtained from the kinematic data is 0.056. Altogether, 36% of the sample galaxies are globally lopsided, which can be interpreted as the disc responding to a halo that was distorted by a tidal encounter. In Paper II, we study the morphological lopsidedness of the same sample of galaxies.
Resumo:
The distribution of stars and gas in many galaxies is asymmetric. This so-called lopsidedness is expected to significantly affect the dynamics and evolution of the disc, including the star formation activity. Here, we measure the degree of lopsidedness for the gas distribution in a selected sample of 70 galaxies from the Westerbork Hi Survey of Spiral and Irregular Galaxies. This complements our earlier work (Paper I) where the kinematic lopsidedness was derived for the same galaxies. The morphological lopsidedness is measured by performing a harmonic decomposition of the surface density maps. The amplitude of lopsidedness A(1), the fractional value of the first Fourier component, is typically quite high (about 0.1) within the optical disc and has a constant phase. Thus, lopsidedness is a common feature in galaxies and indicates a global mode. We measure A(1) out to typically one to four optical radii, sometimes even further. This is, on average, four times larger than the distance to which lopsidedness was measured in the past using near-IR as a tracer of the old stellar component, and therefore provides a new, more stringent constraint on the mechanism for the origin of lopsidedness. Interestingly, the value of A(1) saturates beyond the optical radius. Furthermore, the plot of A(1) versus radius shows fluctuations that we argue are due to local spiral features. We also try to explain the physical origin of this observed disc lopsidedness. No clear trend is found when the degree of lopsidedness is compared to a measure of the isolation or interaction probability of the sample galaxies. However, this does not rule out a tidal origin if the lopsidedness is long-lived. In addition, we find that the early-type galaxies tend to be more morphologically lopsided than the late-type galaxies. Both results together indicate that lopsidedness has a tidal origin.
Resumo:
We report Si-isotopic compositions of 75 sedimentologically and petrographically characterized chert samples with ages ranging from similar to 2600 to 750 Ma using multi-collector inductively coupled plasma mass spectrometry. delta Si-30 values of the cherts analyzed in this study show a similar to 7 parts per thousand range, from -4.29 to +2.85. This variability can be explained in part by (1) simple mixing of silica derived from continental (higher delta Si-30) and hydrothermal (lower delta Si-30) sources, (2) multiple mechanisms of silica precipitation and (3) Rayleigh-type fractionations within pore waters of individual basins. We observe similar to 3 parts per thousand variation in peritidal cherts from a single Neoproterozoic sedimentary basin (Spitsbergen). This variation can be explained by Rayleigh-type fractionation during precipitation from silica-saturated porewaters. In some samples, post-dissolution and reprecipitation of silica could have added to this effect. Our data also indicate that peritidal cherts are enriched in the heavier isotopes of Si whereas basinal cherts associated with banded iron formations (BIF) show lower delta Si-30. This difference could partly be due to Si being derived from hydrothermal sources in BIFs. We postulate that the difference in delta Si-30 between non-BIF and BIF cherts is consistent with the contrasting genesis of these deposits. Low delta Si-30 in BIF is consistent with laboratory experiments showing that silica adsorbed onto Fe-hydroxide particles preferentially incorporates lighter Si isotopes. Despite large intrabasinal variation and environmental differences, the data show a clear pattern of secular variation. Low delta Si-30 in Archean cherts is consistent with a dominantly hydrothermal source of silica to the oceans at that time. The monotonically increasing delta Si-30 from 3.8 to 1.5 Ga appears to reflect a general increase in continental versus hydrothermal sources of Si in seawater, as well as the preferential removal of lighter Si isotopes during silica precipitation in iron-associated cherts from silica-saturated seawater. The highest delta Si-30 values are observed in 1.5 Ga peritidal cherts; in part, these enriched values could reflect increasing sequestration of light silica during soil-forming processes, thus, delivering relatively heavy dissolved silica to the oceans from continental sources. The causes behind the reversal in trend towards lower delta Si-30 in cherts younger than 1.5 Ga old are less clear. Cherts deposited 1800-1900 Ma are especially low delta Si-30, a possible indication of transiently strong hydrothermal input at this time. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Edge-preserving smoothing is widely used in image processing and bilateral filtering is one way to achieve it. Bilateral filter is a nonlinear combination of domain and range filters. Implementing the classical bilateral filter is computationally intensive, owing to the nonlinearity of the range filter. In the standard form, the domain and range filters are Gaussian functions and the performance depends on the choice of the filter parameters. Recently, a constant time implementation of the bilateral filter has been proposed based on raisedcosine approximation to the Gaussian to facilitate fast implementation of the bilateral filter. We address the problem of determining the optimal parameters for raised-cosine-based constant time implementation of the bilateral filter. To determine the optimal parameters, we propose the use of Stein's unbiased risk estimator (SURE). The fast bilateral filter accelerates the search for optimal parameters by faster optimization of the SURE cost. Experimental results show that the SURE-optimal raised-cosine-based bilateral filter has nearly the same performance as the SURE-optimal standard Gaussian bilateral filter and the Oracle mean squared error (MSE)-based optimal bilateral filter.
Resumo:
Savitzky-Golay (S-G) filters are finite impulse response lowpass filters obtained while smoothing data using a local least-squares (LS) polynomial approximation. Savitzky and Golay proved in their hallmark paper that local LS fitting of polynomials and their evaluation at the mid-point of the approximation interval is equivalent to filtering with a fixed impulse response. The problem that we address here is, ``how to choose a pointwise minimum mean squared error (MMSE) S-G filter length or order for smoothing, while preserving the temporal structure of a time-varying signal.'' We solve the bias-variance tradeoff involved in the MMSE optimization using Stein's unbiased risk estimator (SURE). We observe that the 3-dB cutoff frequency of the SURE-optimal S-G filter is higher where the signal varies fast locally, and vice versa, essentially enabling us to suitably trade off the bias and variance, thereby resulting in near-MMSE performance. At low signal-to-noise ratios (SNRs), it is seen that the adaptive filter length algorithm performance improves by incorporating a regularization term in the SURE objective function. We consider the algorithm performance on real-world electrocardiogram (ECG) signals. The results exhibit considerable SNR improvement. Noise performance analysis shows that the proposed algorithms are comparable, and in some cases, better than some standard denoising techniques available in the literature.
Resumo:
The goal of speech enhancement algorithms is to provide an estimate of clean speech starting from noisy observations. The often-employed cost function is the mean square error (MSE). However, the MSE can never be computed in practice. Therefore, it becomes necessary to find practical alternatives to the MSE. In image denoising problems, the cost function (also referred to as risk) is often replaced by an unbiased estimator. Motivated by this approach, we reformulate the problem of speech enhancement from the perspective of risk minimization. Some recent contributions in risk estimation have employed Stein's unbiased risk estimator (SURE) together with a parametric denoising function, which is a linear expansion of threshold/bases (LET). We show that the first-order case of SURE-LET results in a Wiener-filter type solution if the denoising function is made frequency-dependent. We also provide enhancement results obtained with both techniques and characterize the improvement by means of local as well as global SNR calculations.
Resumo:
Here we report chromium isotope compositions, expressed as delta Cr-53/ 52 in per mil (&) relative to NIST 979, measured in selected Cr-rich minerals and rocks formed by the primary magmatic as well as the secondary metamorphic and weathering processes. The main objectives of this study were: (i) to further constrain the isotope composition of the Earth's mantle Cr inventory and its possible variation during geological history, based on the analysis of globally distributed and stratigraphically constrained mantle-derived chromites; and (ii) to investigate the magnitude and systematics of Cr isotope fractionation during oxidative weathering and secondary alteration (i. e., hydration, serpentinization) of the magmatic Cr sources. Specifically, we analyzed delta Cr-53/ 52 in a set of globally distributed mantle-derived chromites (FeMgCr2O4, n = 30) collected from various locations in Europe, Asia, Africa and South America, and our results confirm that a chromite-hosted Earth's mantle Cr inventory is uniform at - 0.079 +/- 0.129& (2SD), which we named here as a ` canonical' mantle d 53/ 52 Cr signature. Furthermore our dataset of stratigraphically constrained chromites, whose crystallization ages cover most of the Earth's geological history, indicate that the bulk Cr isotope composition of the chromite-hosted mantle inventory has remained uniform, within about +/- 0.100&, since at least the Early Archean times (similar to 3500 million years ago, Ma). To investigate the systematics of Cr isotope fractionation associated with alteration processes we analyzed a number of secondary Cr-rich minerals and variably altered ultramafic rocks (i. e., serpentinized harzburgites, lherzolites) that revealed large positive delta Cr-53/ 52 anomalies that are systematically shifted to higher values with an increasing degree of alteration and serpentinization. The degree of aqueous alteration and serpentinization was quantified by the abundances of fluid-mobile (Rb, K) elements, and by the Loss On Ignition (LOI) parameter, which determines the amount of structurally bound water (OH/ H2O) present in secondary hydrated minerals like serpentine. Overall, we observed that altered ultramafic rocks that yielded the highest LOI values, and the lowest amounts of fluid mobile elements, also yielded the heaviest delta Cr-53/ 52 signatures. Therefore, we conclude that secondary alteration (i.e., hydration, serpentinization) of ultramafic rocks in near-surface oxidative environments tend to shift the bulk Cr isotope composition of the weathered products to isotopically heavier values, pointing to a dynamic redox cycling of Cr in the Earth's crustal and near-surface environments. Hence, if validated by future
Resumo:
An important question in kernel regression is one of estimating the order and bandwidth parameters from available noisy data. We propose to solve the problem within a risk estimation framework. Considering an independent and identically distributed (i.i.d.) Gaussian observations model, we use Stein's unbiased risk estimator (SURE) to estimate a weighted mean-square error (MSE) risk, and optimize it with respect to the order and bandwidth parameters. The two parameters are thus spatially adapted in such a manner that noise smoothing and fine structure preservation are simultaneously achieved. On the application side, we consider the problem of image restoration from uniform/non-uniform data, and show that the SURE approach to spatially adaptive kernel regression results in better quality estimation compared with its spatially non-adaptive counterparts. The denoising results obtained are comparable to those obtained using other state-of-the-art techniques, and in some scenarios, superior.
Resumo:
We prove a result on the structure of finite proper holomorphic mappings between complex manifolds that are products of hyperbolic Riemann surfaces. While an important special case of our result follows from the ideas developed by Remmert and Stein, the proof of the full result relies on the interplay of the latter ideas and a finiteness theorem for Riemann surfaces.
Resumo:
We address the problem of designing an optimal pointwise shrinkage estimator in the transform domain, based on the minimum probability of error (MPE) criterion. We assume an additive model for the noise corrupting the clean signal. The proposed formulation is general in the sense that it can handle various noise distributions. We consider various noise distributions (Gaussian, Student's-t, and Laplacian) and compare the denoising performance of the estimator obtained with the mean-squared error (MSE)-based estimators. The MSE optimization is carried out using an unbiased estimator of the MSE, namely Stein's Unbiased Risk Estimate (SURE). Experimental results show that the MPE estimator outperforms the SURE estimator in terms of SNR of the denoised output, for low (0 -10 dB) and medium values (10 - 20 dB) of the input SNR.
Resumo:
We propose optimal bilateral filtering techniques for Gaussian noise suppression in images. To achieve maximum denoising performance via optimal filter parameter selection, we adopt Stein's unbiased risk estimate (SURE)-an unbiased estimate of the mean-squared error (MSE). Unlike MSE, SURE is independent of the ground truth and can be used in practical scenarios where the ground truth is unavailable. In our recent work, we derived SURE expressions in the context of the bilateral filter and proposed SURE-optimal bilateral filter (SOBF). We selected the optimal parameters of SOBF using the SURE criterion. To further improve the denoising performance of SOBF, we propose variants of SOBF, namely, SURE-optimal multiresolution bilateral filter (SMBF), which involves optimal bilateral filtering in a wavelet framework, and SURE-optimal patch-based bilateral filter (SPBF), where the bilateral filter parameters are optimized on small image patches. Using SURE guarantees automated parameter selection. The multiresolution and localized denoising in SMBF and SPBF, respectively, yield superior denoising performance when compared with the globally optimal SOBF. Experimental validations and comparisons show that the proposed denoisers perform on par with some state-of-the-art denoising techniques. (C) 2015 SPIE and IS&T