152 resultados para Gene Duplication

em Indian Institute of Science - Bangalore - Índia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plant seeds contain a large number of protease inhibitors of animal, fungal, and bacterial origin. One of the well-studied families of these inhibitors is the Bowman-Birk family(BBI). The BBIs from dicotyledonous seeds are 8K, double-headed proteins. In contrast, the 8K inhibitors from monocotyledonous seeds are single headed. Monocots also have a 16K, double-headed inhibitor. We have determined the primary structure of a Bowman-Birk inhibitor from a dicot, horsegram, by sequential edman analysis of the intact protein and peptides derived from enzymatic and chemical cleavage. The 76-residue-long inhibitor is very similar to that ofMacrotyloma axillare. An analysis of this inhibitor along with 26 other Bowman-Birk inhibitor domains (MW 8K) available in the SWISSPROT databank revealed that the proteins from monocots and dicots belong to related but distinct families. Inhibitors from monocots show larger variation in sequence. Sequence comparison shows that a crucial disulphide which connects the amino and carboxy termini of the active site loop is lost in monocots. The loss of a reactive site in monocots seems to be correlated to this. However, it appears that this disulphide is not absolutely essential for retention of inhibitory function. Our analysis suggests that gene duplication leading to a 16K inhibitor in monocots has occurred, probably after the divergence of monocots and dicots, and also after the loss of second reactive site in monocots.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Restriction endonucleases (REases) protect bacteria from invading foreign DNAs and are endowed with exquisite sequence specificity. REases have originated from the ancestral proteins and evolved new sequence specificities by genetic recombination, gene duplication, replication slippage, and transpositional events. They are also speculated to have evolved from nonspecific endonucleases, attaining a high degree of sequence specificity through point mutations. We describe here an example of generation of exquisitely site-specific REase from a highly-promiscuous one by a single point mutation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The complete amino-acid sequence of sheep liver cytosolic serine hydroxymethyltransferase was determined from an analysis of tryptic, chymotryptic, CNBr and hydroxylamine peptides. Each subunit of sheep liver serine hydroxymethyltransferase consisted of 483 amino-acid residues. A comparison of this sequence with 8 other serine hydroxymethyltransferases revealed that a possible gene duplication event could have occurred after the divergence of animals and fungi. This analysis also showed independent duplication of SHMT genes in Neurospora crassa. At the secondary structural level, all the serine hydroxymethyltransferases belong to the alpha/beta category of proteins. The predicted secondary structure of sheep liver serine hydroxymethyltransferase was similar to that of the observed structure of tryptophan synthase, another pyridoxal 5'-phosphate containing enzyme, suggesting that sheep liver serine hydroxymethyltransferase might have a similar pyridoxal 5'-phosphate binding domain. In addition, a conserved glycine rich region, G L Q G G P, was identified in all the serine hydroxymethyltransferases and could be important in pyridoxal 5'-phosphate binding. A comparison of the cytosolic serine hydroxymethyltransferases from rabbit and sheep liver with other proteins sequenced from both these sources showed that serine hydroxymethyltransferase was a highly conserved protein. It was slightly less conserved than cytochrome c but better conserved than myoglobin, both of which are well known evolutionary markers. C67 and C203 were specifically protected by pyridoxal 5'-phosphate against modification with [C-14]iodoacetic acid, while C247 and C261 were buried in the native serine hydroxymethyltransferase. However, the cysteines are not conserved among the various serine hydroxymethyltransferases. The exact role of the cysteines in the reaction catalyzed by serine hydroxymethyltransferase remains to be elucidated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Significance: The bi-domain protein tyrosine phosphatases (PTPs) exemplify functional evolution in signaling proteins for optimal spatiotemporal signal transduction. Bi-domain PTPs are products of gene duplication. The catalytic activity, however, is often localized to one PTP domain. The inactive PTP domain adopts multiple functional roles. These include modulation of catalytic activity, substrate specificity, and stability of the bi-domain enzyme. In some cases, the inactive PTP domain is a receptor for redox stimuli. Since multiple bi-domain PTPs are concurrently active in related cellular pathways, a stringent regulatory mechanism and selective cross-talk is essential to ensure fidelity in signal transduction. Recent Advances: The inactive PTP domain is an activator for the catalytic PTP domain in some cases, whereas it reduces catalytic activity in other bi-domain PTPs. The relative orientation of the two domains provides a conformational rationale for this regulatory mechanism. Recent structural and biochemical data reveal that these PTP domains participate in substrate recruitment. The inactive PTP domain has also been demonstrated to undergo substantial conformational rearrangement and oligomerization under oxidative stress. Critical Issues and Future Directions: The role of the inactive PTP domain in coupling environmental stimuli with catalytic activity needs to be further examined. Another aspect that merits attention is the role of this domain in substrate recruitment. These aspects have been poorly characterized in vivo. These lacunae currently restrict our understanding of neo-functionalization of the inactive PTP domain in the bi-domain enzyme. It appears likely that more data from these research themes could form the basis for understanding the fidelity in intracellular signal transduction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The cyclic AMP receptor protein (CRP) family of transcription factors consists of global regulators of bacterial gene expression. Here, we identify two paralogous CRPs in the genome of Mycobacterium smegmatis that have 78% identical sequences and characterize them biochemically and functionally. The two proteins (MSMEG_0539 and MSMEG_6189) show differences in cAMP binding affinity, trypsin sensitivity, and binding to a CRP site that we have identified upstream of the msmeg_3781 gene. MSMEG_6189 binds to the CRP site readily in the absence of cAMP, while MSMEG_0539 binds in the presence of cAMP, albeit weakly. msmeg_6189 appears to be an essential gene, while the ?msmeg_0539 strain was readily obtained. Using promoter-reporter constructs, we show that msmeg_3781 is regulated by CRP binding, and its transcription is repressed by MSMEG_6189. Our results are the first to characterize two paralogous and functional CRPs in a single bacterial genome. This gene duplication event has subsequently led to the evolution of two proteins whose biochemical differences translate to differential gene regulation, thus catering to the specific needs of the organism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several late gene expression factors (Lefs) have been implicated in fostering high levels of transcription from the very late gene promoters of polyhedrin and p10 from baculoviruses. We cloned and characterized from Bombyx mori nuclear polyhedrosis virus a late gene expression factor (Bmlef2) that encodes a 209-amino-acid protein harboring a Cys-rich C-terminal domain. The temporal transcription profiles of lef2 revealed a 1.2-kb transcript in both delayed early and late periods after virus infection. Transcription start site mapping identified the presence of an aphidicolin-sensitive late transcript arising from a TAAG motif located at -352 nucleotides and an aphidicolin-insensitive early transcript originating from a TTGT motif located 35 nucleotides downstream to a TATA box at -312 nucleotides, with respect to the +1 ATG of lef2. BmLef2 trans-activated very late gene expression from both polyhedrin and p10 promoters in transient expression assays. Internal deletion of the Cys-rich domain from the C-terminal region abolished the transcriptional activation. Inactivation of Lef2 synthesis by antisense lef2 transcripts drastically reduced the very late gene transcription but showed little effect on the expression from immediate early promoter. Decrease in viral DNA synthesis and a reduction in virus titer were observed only when antisense lef2 was expressed under the immediate early (ie-1) promoter. Furthermore, the antisense experiments suggested that lef2 plays a direct role in very late gene transcription.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Guanylyl cyclase C (GCC) is the receptor for the gastrointestinal hormones, guanylin, and uroguanylin, in addition to the bacterial heat-stable enterotoxins, which are one of the major causes of watery diarrhea the world over. GCC is expressed in intestinal cells, colorectal tumor tissue and tumors originating from metastasis of the colorectal carcinoma. We have earlier generated a monoclonal antibody to human GCC, GCC:B10, which was useful for the immunohistochemical localization of the receptor in the rat intestine (Nandi A et al., 1997, J Cell Biochem 66:500-511), and identified its epitope to a 63-amino acid stretch in the intracellular domain of GCC. In view of the potential that this antibody has for the identification of colorectal tumors, we have characterized the epitope for GCC:B10 in this study. Overlapping peptide synthesis indicated that the epitope was contained in the sequence HIPPENIFPLE. This sequence was unique to GCC, and despite a short stretch of homology with serum amyloid protein and pertussis toxin, no cross reactivity was detected. The core epitope was delineated using a random hexameric phage display library, and two categories of sequences were identified, containing either a single, or two adjacent proline residues. No sequence identified by phage display was identical to the epitope present in GCC, indicating that phage sequences represented mimotopes of the native epitope. Alignment of these sequences with HIPPENIFPLE suggested duplication of the recognition motif, which was confirmed by peptide synthesis. These studies allowed us not only to define the requirements of epitope recognition by GCC:B10 monoclonal antibody, but also to describe a novel means of epitope recognition involving topological mimicry and probable duplication of the cognate epitope in the native guanylyl cyclase C receptor sequence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transcription of tRNA genes by RNA polymerase III is controlled by the internal conserved sequences within the coding region and the immediate upstream flanking sequences. A highly transcribed copy of glycyl tRNA gene tRNA1(Gly)-1 from Bombyx mori is down regulated by sequences located much farther upstream in the region -150 to -300 nucleotides (nt), with respect to the +1 nt of tRNA. The negative regulatory effect has been narrowed down to a sequence motif 'TATATAA', a perfect consensus recognised by the TATA binding protein, TBP. This sequence element, when brought closer to the transcription start point, on the other hand, exerts a positive effect by promoting transcription of the gene devoid of other cis regulatory elements. The identity of the nuclear protein interacting with this 'TATATAA' element to TBP has been established by antibody and mutagenesis studies. The 'TATATAA' element thus influences the transcription of tRNA genes positively or negatively in a position-dependent manner either by recruitment or sequestration of TBP from the transcription machinery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although LH is essential for survival and function of the corpus luteum (CL) in higher primates, luteolysis occurs during nonfertile cycles without a discernible decrease in circulating LH levels. Using genome-wide expression analysis, several experiments were performed to examine the processes of luteolysis and rescue of luteal function in monkeys. Induced luteolysis with GnRH receptor antagonist (Cetrorelix) resulted in differential regulation of 3949 genes, whereas replacement with exogenous LH (Cetrorelix plus LH) led to regulation of 4434 genes (1563 down-regulation and 2871 up-regulation). A model system for prostaglandin (PG) F-2 alpha-induced luteolysis in the monkey was standardized and demonstrated that PGF(2 alpha) regulated expression of 2290 genes in the CL. Analysis of the LH-regulated luteal transcriptome revealed that 120 genes were regulated in an antagonistic fashion by PGF(2 alpha). Based on the microarray data, 25 genes were selected for validation by real-time RT-PCR analysis, and expression of these genes was also examined in the CL throughout the luteal phase and from monkeys treated with human chorionic gonadotropin (hCG) to mimic early pregnancy. The results indicated changes in expression of genes favorable to PGF(2 alpha) action during the late to very late luteal phase, and expressions of many of these genes were regulated in an opposite manner by exogenous hCG treatment. Collectively, the findings suggest that curtailment of expression of downstream LH-target genes possibly through PGF(2 alpha) action on the CL is among the mechanisms underlying cross talk between the luteotropic and luteolytic signaling pathways that result in the cessation of luteal function, but hCG is likely to abrogate the PGF(2 alpha)-responsive gene expression changes resulting in luteal rescue crucial for the maintenance of early pregnancy. (Endocrinology 150: 1473-1484, 2009)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

THE rapid development of recombinant DNA technology has brought forth a revolution in biology'>", it aids us to have a closer look at the 'way genes are organized, eS11 ecially in the complex eucaryotic genornes'<", Although many animal and yeast genes have been studied in detail using recombinant DNA technology, plant genes have seldom been targets for such studie., Germination is an ideal process to study gene expression .because it effects a . shift in the metabolic status of seeds from a state of 'dormancy to an active one. AJ;l understanding of gene organization and regulation darin.g germination can be accomplblted by molecular cloning of DNA from seeds lik.e rice. To study the status of histone, rRNA tRNA and other genes in the rice genome, a general method was developed to clone eucarvotic DNA in a' plasmid vector pBR 322. This essentially ~ involves the following steps. The rice embryo and plasmid pBR 322 DNAs were cut witll restriction endonuclease Bam Hi to generate stick.Y ends, The plasmid DNA was puosphatased, the DNA~ ware a~·tnealed and joined 'by T4 phage DNA ligase. The recombinant DNA molecules thus produced were transjerred into E. coli and colonies containing them Were selected by their sensitivity to tetracycline and resistance to ampicillin, Two clones were identified . 2S haVing tRNA genes by hybridization of the DNA in the clones \vitl1 32P-la.belled rice tRNAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In bovines characterization of biochemical and molecular determinants of the dominant follicle before and during different time intervals after gonadotrophin surge requires precise identification of the dominant follicle from a follicular wave. The objectives of the present study were to standardize an experimental model in buffalo cows for accurately identifying the dominant follicle of the first wave of follicular growth and characterize changes in follicular fluid hormone concentrations as well as expression patterns of various genes associated with the process of ovulation. From the day of estrus (day 0), animals were subjected to blood sampling and ultrasonography for monitoring circulating progesterone levels and follicular growth. On day 7 of the cycle, animals were administered a PGF2α analogue (Tiaprost Trometamol, 750 μg i.m.) followed by an injection of hCG (2000 IU i.m.) 36 h later. Circulating progesterone levels progressively increased from day 1 of the cycle to 2.26 ± 0.17 ng/ml on day 7 of the cycle, but declined significantly after PGF2α injection. A progressive increase in the size of the dominant follicle was observed by ultrasonography. The follicular fluid estradiol and progesterone concentrations in the dominant follicle were 600 ± 16.7 and 38 ± 7.6 ng/ml, respectively, before hCG injection and the concentration of estradiol decreased to 125.8 ± 25.26 ng/ml, but concentration of progesterone increased to 195 ± 24.6 ng/ml, 24 h post-hCG injection. Inh-α and Cyp19A1 expressions in granulosa cells were maximal in the dominant follicle and declined in response to hCG treatment. Progesterone receptor, oxytocin and cycloxygenase-2 expressions in granulosa cells, regarded as markers of ovulation, were maximal at 24 h post-hCG. The expressions of genes belonging to the super family of proteases were also examined; Cathepsin L expression decreased, while ADAMTS 3 and 5 expressions increased 24 h post-hCG treatment. The results of the current study indicate that sequential treatments of PGF2α and hCG during early estrous cycle in the buffalo cow leads to follicular growth that culminates in ovulation. The model system reported in the present study would be valuable for examining temporo-spatial changes in the periovulatory follicle immediately before and after the onset of gonadotrophin surge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Redundant DNA can buffer sequence dependent structural deviations from an ideal double helix. Buffering serves a mechanistic function by reducing extraneous conformational effects which could interfere with readout or which would impose energetic constraints on evolution. It also serves an evolutionary function by allowing for gradual variations in conformation-dependent regulation of gene expression. Such gradualism is critical for the rate of evolution. The buffer structure concept provides a new interpretation for repetitive DNA and for exons and introns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A stretch of 71 nucleotides in a 1.2 kilobase pair Pst I fragment of rice DNA was identified as tRNA~ gene by hybridization and nucleotide sequence analyses. The hybridization of genomic DNA with the tRNA gene showed that there are about 10 glycine tRNA genes per diploid rice genome. The 3' and 5' internal control regions, where RNA polymerase III and transcription factors bind, were found to be present in the coding sequence. The gene was transcribed into a 4S product in an yeast cell-free extract. The substitution of 5' internal control region with analogous sequences from either M13mpl9 or M13mpl8 DNA did not affect the transcription of the gene in vitro. The changes in three highly conserved nucleotides in the consensus 5' internal control region (RGYNNARYGG; R = purine, Y = pyrimidine, N = any nucleotide) did not affect transcription showing that these nucleotides are not essential for promotion of transcription. There were two 16 base pair repeats, 'TGTTTGTTTCAGCTTA' at - 130 and - 375 positions upstream from the start of the gene. Deletion of 5' flanking sequences including the 16 base pair repeat at - 375 showed increased transcription indicating that these sequences negatively modulate the expression of the gene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cDNA clone for cytochrome P-450e, a phenobarbitone-inducible species in rat liver, has been isolated and characterized. With the use of this cloned DNA, an attempt has been initiated to elucidate the factors regulating the cytochrome P-450 gene expression. Inhibitors of heme synthesis such as cobalt chloride and 3-amino-1,2,4-triazole block the induction of cytochrome P-450e by phenobarbitone at the level of transcription. This is evident from the decrease in the rate of synthesis of cytochrome P-450e, a decrease in the levels of specific translatable messenger RNA, a decrease in the specific cytoplasmic and nuclear messenger RNA contents, and nuclear transcription of cytochrome P-450e gene, as revealed by hybridization to the cloned probe, under these conditions. It is proposed that heme is a general regulator of cytochrome P-450 gene expression at the level of transcription, whereas the drug or its metabolite would impart the specificity needed for the induction of a particular species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cDNA clone for the Ya subunit of glutathione transferase from rat liver was constructed in E.coli. The clone hybridized to Ya and Yc subunit messenger RNAs. On the basis of experiments involving cell-free translation and hybridization to the cloned probe, it was shown that prototype inducers of cytochrome P-450 such as phenobarbitone and 3-methylcholanthrene as well as inhibitors such as CoCl2 and 3-amino-l,2,4-triazole enhanced the glutathione transferase (Ya+Yc) messenger RNA contents in rat liver. A comparative study with the induction of cytochrome P-450 (b+e) by phenobarbitone revealed that the drug manifested a striking increase in the nuclear pre-messenger RNAs for the cytochrome at 12 hr, but did not significantly affect the same in the case of glutathione transferase (Ya+Yc). 3-Amino-l, 2,4-tnazole and CoCl- blocked the phenobarbitone mediated increase in cytochrome P-450 (b+e) nuclear pre-messenger RNAs. These compounds did not significantly affect the glutathione transferase (Ya+Yc) nuclear pre-messenger RNA levels. The polysomal, poly (A)- containing messenger RNAs for cytochrome P-450 (b+e) increased by 12–15 fold after phenobarbitone administration, reached a maximum around 16hr and then decreased sharply. In comparison, the increase in the case of glutathione transferase (Ya+Yc) mesenger RNAs was sluggish and steady and a value of 3–4 fold was reached around 24 hr. Run-off transcription rates for cytochrome P-450 (b+e) increased by nearly 15 fold in 4 hr after phenobarbitone administration, whereas the increase for glutathione transferase (Ya+Yc) was only 2.0 fold. At 12 hr after the drug administration, the glutathione transferase (Ya+Yc) transcription rates were near normal. Administration of 3-amino-l,2,4-triazole and CoCl2 blocked the phenobarbitone-mediated increase in the transcription of cytochrome P-450 (b+e) messenger RNAs. These compounds at best had only marginal effects on the transcription of glutathione transferase (Ya+Yc) messenger RNAs. The half-life of cytochrome P-450 (b+e) messenger RNA was estimated to be 3–4 hr, whereas that for glutathione transferase (Ya+Yc) was found to be 8-9 hr. Administration of phenobarbitone enhanced the half-life of glutathione transferase (Ya+Yc) messenger RNA by nearly two fold. It is suggested that while transcription activation may play a primary role in the induction of cytochrome P-450 (b+e), the induction of glutathione transferase (Ya+Yc) may essentially involve stabilization of the messenger RNAs.