44 resultados para GNSS, Ambiguity resolution, Regularization, Ill-posed problem, Success probability
em Indian Institute of Science - Bangalore - Índia
Resumo:
A comparison is made of the performance of a weather Doppler radar with a staggered pulse repetition time and a radar with a random (but known) phase. As a standard for this comparison, the specifications of the forthcoming next generation weather radar (NEXRAD) are used. A statistical analysis of the spectral momentestimates for the staggered scheme is developed, and a theoretical expression for the signal-to-noise ratio due to recohering-filteringrecohering for the random phase radar is obtained. Algorithms for assignment of correct ranges to pertinent spectral moments for both techniques are presented.
Resumo:
The smooth DMS-FEM, recently proposed by the authors, is extended and applied to the geometrically nonlinear and ill-posed problem of a deformed and wrinkled/slack membrane. A key feature of this work is that three-dimensional nonlinear elasticity equations corresponding to linear momentum balance, without any dimensional reduction and the associated approximations, directly serve as the membrane governing equations. Domain discretization is performed with triangular prism elements and the higher order (C1 or more) interelement continuity of the shape functions ensures that the errors arising from possible jumps in the first derivatives of the conventional C0 shape functions do not propagate because the ill-conditioned tangent stiffness matrices are iteratively inverted. The present scheme employs no regularization and exhibits little sensitivity to h-refinement. Although the numerically computed deformed membrane profiles do show some sensitivity to initial imperfections (nonplanarity) in the membrane profile needed to initiate transverse deformations, the overall patterns of the wrinkles and the deformed shapes appear to be less so. Finally, the deformed profiles, computed through the DMS FEM-based weak formulation, are compared with those obtained through an experiment on an ultrathin Kapton membrane, wherein wrinkles form because of the applied boundary displacement conditions. Comparisons with a reported experiment on a rectangular membrane are also provided. These exercises lend credence to the feasibility of the DMS FEM-based numerical route to computing post-wrinkled membrane shapes. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
Real-time image reconstruction is essential for improving the temporal resolution of fluorescence microscopy. A number of unavoidable processes such as, optical aberration, noise and scattering degrade image quality, thereby making image reconstruction an ill-posed problem. Maximum likelihood is an attractive technique for data reconstruction especially when the problem is ill-posed. Iterative nature of the maximum likelihood technique eludes real-time imaging. Here we propose and demonstrate a compute unified device architecture (CUDA) based fast computing engine for real-time 3D fluorescence imaging. A maximum performance boost of 210x is reported. Easy availability of powerful computing engines is a boon and may accelerate to realize real-time 3D fluorescence imaging. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. http://dx.doi.org/10.1063/1.4754604]
Resumo:
We have developed an efficient fully three-dimensional (3D) reconstruction algorithm for diffuse optical tomography (DOT). The 3D DOT, a severely ill-posed problem, is tackled through a pseudodynamic (PD) approach wherein an ordinary differential equation representing the evolution of the solution on pseudotime is integrated that bypasses an explicit inversion of the associated, ill-conditioned system matrix. One of the most computationally expensive parts of the iterative DOT algorithm, the reevaluation of the Jacobian in each of the iterations, is avoided by using the adjoint-Broyden update formula to provide low rank updates to the Jacobian. In addition, wherever feasible, we have also made the algorithm efficient by integrating along the quadratic path provided by the perturbation equation containing the Hessian. These algorithms are then proven by reconstruction, using simulated and experimental data and verifying the PD results with those from the popular Gauss-Newton scheme. The major findings of this work are as follows: (i) the PD reconstructions are comparatively artifact free, providing superior absorption coefficient maps in terms of quantitative accuracy and contrast recovery; (ii) the scaling of computation time with the dimension of the measurement set is much less steep with the Jacobian update formula in place than without it; and (iii) an increase in the data dimension, even though it renders the reconstruction problem less ill conditioned and thus provides relatively artifact-free reconstructions, does not necessarily provide better contrast property recovery. For the latter, one should also take care to uniformly distribute the measurement points, avoiding regions close to the source so that the relative strength of the derivatives for measurements away from the source does not become insignificant. (c) 2012 Optical Society of America
Resumo:
The calculation of First Passage Time (moreover, even its probability density in time) has so far been generally viewed as an ill-posed problem in the domain of quantum mechanics. The reasons can be summarily seen in the fact that the quantum probabilities in general do not satisfy the Kolmogorov sum rule: the probabilities for entering and non-entering of Feynman paths into a given region of space-time do not in general add up to unity, much owing to the interference of alternative paths. In the present work, it is pointed out that a special case exists (within quantum framework), in which, by design, there exists one and only one available path (i.e., door-way) to mediate the (first) passage -no alternative path to interfere with. Further, it is identified that a popular family of quantum systems - namely the 1d tight binding Hamiltonian systems - falls under this special category. For these model quantum systems, the first passage time distributions are obtained analytically by suitably applying a method originally devised for classical (stochastic) mechanics (by Schroedinger in 1915). This result is interesting especially given the fact that the tight binding models are extensively used in describing everyday phenomena in condense matter physics.
Resumo:
The image reconstruction problem encountered in diffuse optical tomographic imaging is ill-posed in nature, necessitating the usage of regularization to result in stable solutions. This regularization also results in loss of resolution in the reconstructed images. A frame work, that is attributed by model-resolution, to improve the reconstructed image characteristics using the basis pursuit deconvolution method is proposed here. The proposed method performs this deconvolution as an additional step in the image reconstruction scheme. It is shown, both in numerical and experimental gelatin phantom cases, that the proposed method yields better recovery of the target shapes compared to traditional method, without the loss of quantitativeness of the results.
Resumo:
An adaptive regularization algorithm that combines elementwise photon absorption and data misfit is proposed to stabilize the non-linear ill-posed inverse problem. The diffuse photon distribution is low near the target compared to the normal region. A Hessian is proposed based on light and tissue interaction, and is estimated using adjoint method by distributing the sources inside the discretized domain. As iteration progresses, the photon absorption near the inhomogeneity becomes high and carries more weightage to the regularization matrix. The domain's interior photon absorption and misfit based adaptive regularization method improves quality of the reconstructed Diffuse Optical Tomographic images.
Resumo:
Diffuse optical tomography (DOT) is one of the ways to probe highly scattering media such as tissue using low-energy near infra-red light (NIR) to reconstruct a map of the optical property distribution. The interaction of the photons in biological tissue is a non-linear process and the phton transport through the tissue is modelled using diffusion theory. The inversion problem is often solved through iterative methods based on nonlinear optimization for the minimization of a data-model misfit function. The solution of the non-linear problem can be improved by modeling and optimizing the cost functional. The cost functional is f(x) = x(T)Ax - b(T)x + c and after minimization, the cost functional reduces to Ax = b. The spatial distribution of optical parameter can be obtained by solving the above equation iteratively for x. As the problem is non-linear, ill-posed and ill-conditioned, there will be an error or correction term for x at each iteration. A linearization strategy is proposed for the solution of the nonlinear ill-posed inverse problem by linear combination of system matrix and error in solution. By propagating the error (e) information (obtained from previous iteration) to the minimization function f(x), we can rewrite the minimization function as f(x; e) = (x + e)(T) A(x + e) - b(T)(x + e) + c. The revised cost functional is f(x; e) = f(x) + e(T)Ae. The self guided spatial weighted prior (e(T)Ae) error (e, error in estimating x) information along the principal nodes facilitates a well resolved dominant solution over the region of interest. The local minimization reduces the spreading of inclusion and removes the side lobes, thereby improving the contrast, localization and resolution of reconstructed image which has not been possible with conventional linear and regularization algorithm.
Resumo:
The inverse problem in the diffuse optical tomography is known to be nonlinear, ill-posed, and sometimes under-determined, requiring regularization to obtain meaningful results, with Tikhonov-type regularization being the most popular one. The choice of this regularization parameter dictates the reconstructed optical image quality and is typically chosen empirically or based on prior experience. An automated method for optimal selection of regularization parameter that is based on regularized minimal residual method (MRM) is proposed and is compared with the traditional generalized cross-validation method. The results obtained using numerical and gelatin phantom data indicate that the MRM-based method is capable of providing the optimal regularization parameter. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). DOI: 10.1117/1.JBO.17.10.106015]
Resumo:
We propose a self-regularized pseudo-time marching scheme to solve the ill-posed, nonlinear inverse problem associated with diffuse propagation of coherent light in a tissuelike object. In particular, in the context of diffuse correlation tomography (DCT), we consider the recovery of mechanical property distributions from partial and noisy boundary measurements of light intensity autocorrelation. We prove the existence of a minimizer for the Newton algorithm after establishing the existence of weak solutions for the forward equation of light amplitude autocorrelation and its Frechet derivative and adjoint. The asymptotic stability of the solution of the ordinary differential equation obtained through the introduction of the pseudo-time is also analyzed. We show that the asymptotic solution obtained through the pseudo-time marching converges to that optimal solution provided the Hessian of the forward equation is positive definite in the neighborhood of optimal solution. The superior noise tolerance and regularization-insensitive nature of pseudo-dynamic strategy are proved through numerical simulations in the context of both DCT and diffuse optical tomography. (C) 2010 Optical Society of America.
Resumo:
We propose an iterative data reconstruction technique specifically designed for multi-dimensional multi-color fluorescence imaging. Markov random field is employed (for modeling the multi-color image field) in conjunction with the classical maximum likelihood method. It is noted that, ill-posed nature of the inverse problem associated with multi-color fluorescence imaging forces iterative data reconstruction. Reconstruction of three-dimensional (3D) two-color images (obtained from nanobeads and cultured cell samples) show significant reduction in the background noise (improved signal-to-noise ratio) with an impressive overall improvement in the spatial resolution (approximate to 250 nm) of the imaging system. Proposed data reconstruction technique may find immediate application in 3D in vivo and in vitro multi-color fluorescence imaging of biological specimens. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4769058]
Resumo:
Typical image-guided diffuse optical tomographic image reconstruction procedures involve reduction of the number of optical parameters to be reconstructed equal to the number of distinct regions identified in the structural information provided by the traditional imaging modality. This makes the image reconstruction problem less ill-posed compared to traditional underdetermined cases. Still, the methods that are deployed in this case are same as those used for traditional diffuse optical image reconstruction, which involves a regularization term as well as computation of the Jacobian. A gradient-free Nelder-Mead simplex method is proposed here to perform the image reconstruction procedure and is shown to provide solutions that closely match ones obtained using established methods, even in highly noisy data. The proposed method also has the distinct advantage of being more efficient owing to being regularization free, involving only repeated forward calculations. (C) 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)
Resumo:
We propose a self-regularized pseudo-time marching strategy for ill-posed, nonlinear inverse problems involving recovery of system parameters given partial and noisy measurements of system response. While various regularized Newton methods are popularly employed to solve these problems, resulting solutions are known to sensitively depend upon the noise intensity in the data and on regularization parameters, an optimal choice for which remains a tricky issue. Through limited numerical experiments on a couple of parameter re-construction problems, one involving the identification of a truss bridge and the other related to imaging soft-tissue organs for early detection of cancer, we demonstrate the superior features of the pseudo-time marching schemes.
Resumo:
In positron emission tomography (PET), image reconstruction is a demanding problem. Since, PET image reconstruction is an ill-posed inverse problem, new methodologies need to be developed. Although previous studies show that incorporation of spatial and median priors improves the image quality, the image artifacts such as over-smoothing and streaking are evident in the reconstructed image. In this work, we use a simple, yet powerful technique to tackle the PET image reconstruction problem. Proposed technique is based on the integration of Bayesian approach with that of finite impulse response (FIR) filter. A FIR filter is designed whose coefficients are determined based on the surface diffusion model. The resulting reconstructed image is iteratively filtered and fed back to obtain the new estimate. Experiments are performed on a simulated PET system. The results show that the proposed approach is better than recently proposed MRP algorithm in terms of image quality and normalized mean square error.
Resumo:
Often the soil hydraulic parameters are obtained by the inversion of measured data (e.g. soil moisture, pressure head, and cumulative infiltration, etc.). However, the inverse problem in unsaturated zone is ill-posed due to various reasons, and hence the parameters become non-unique. The presence of multiple soil layers brings the additional complexities in the inverse modelling. The generalized likelihood uncertainty estimate (GLUE) is a useful approach to estimate the parameters and their uncertainty when dealing with soil moisture dynamics which is a highly non-linear problem. Because the estimated parameters depend on the modelling scale, inverse modelling carried out on laboratory data and field data may provide independent estimates. The objective of this paper is to compare the parameters and their uncertainty estimated through experiments in the laboratory and in the field and to assess which of the soil hydraulic parameters are independent of the experiment. The first two layers in the field site are characterized by Loamy sand and Loamy. The mean soil moisture and pressure head at three depths are measured with an interval of half hour for a period of 1 week using the evaporation method for the laboratory experiment, whereas soil moisture at three different depths (60, 110, and 200 cm) is measured with an interval of 1 h for 2 years for the field experiment. A one-dimensional soil moisture model on the basis of the finite difference method was used. The calibration and validation are approximately for 1 year each. The model performance was found to be good with root mean square error (RMSE) varying from 2 to 4 cm(3) cm(-3). It is found from the two experiments that mean and uncertainty in the saturated soil moisture (theta(s)) and shape parameter (n) of van Genuchten equations are similar for both the soil types. Copyright (C) 2010 John Wiley & Sons, Ltd.