127 resultados para GLUCOSE-PRODUCTION

em Indian Institute of Science - Bangalore - Índia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Summary: An uncommon thermophilic fungus, Melanocarpus albomyces, was isolated from soil and compost by incubating samples in a glucose/sorbose/asparagine liquid medium, followed by enrichment culture in medium containing sugarcane bagasse as carbon source. The culture filtrate protein of the fungus grown in the presence of bagasse or xylose hydrolysed xylan and some other polysaccharides but cellulose was not hydrolysed. High extracellular xylanase (EC 3.2.1.8) activity was produced by cultures grown on xylose or hemicellulosic materials. The enzyme was induced in glucose-grown washed mycelia in response to addition of xylose or xylan but not by alkyl or aryl β-D-xylosides. Cultures produced higher enzyme yields in shaken flasks than in a fermenter. Gel-filtration chromatography of culture filtrate protein showed the presence of two isoenzymes of xylanase, whose relative proportions varied with the carbon source used for growth. The extent of hydrolysis of heteroxylans or the hemicellulosic fraction of bagasse by culture filtrate protein preparations was greater when the cultures had been grown on bagasse rather than xylose as the inducing substrate. The activity of xylanase preparations was increased when an exogenous β-glucosidase was added.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diabetes is a serious disease during which the body's production and use of insulin is impaired, causing glucose concentration level toincrease in the bloodstream. Regulating blood glucose levels as close to normal as possible, leads to a substantial decrease in long term complications of diabetes. In this paper, an intelligent neural network on-line optimal feedback treatment strategy based on nonlinear optimal control theory is presented for the disease using subcutaneous treatment strategy. A simple mathematical model of the nonlinear dynamics of glucose and insulin interaction in the blood system is considered based on the Bergman's minimal model. A glucose infusion term representing the effect of glucose intake resulting from a meal is introduced into the model equations. The efficiency of the proposed controllers is shown taking random parameters and random initial conditions in presence of physical disturbances like food intake. A comparison study with linear quadratic regulator theory brings Out the advantages of the nonlinear control synthesis approach. Simulation results show that unlike linear optimal control, the proposed on-line continuous infusion strategy never leads to severe hypoglycemia problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diabetes is a long-term disease during which the body's production and use of insulin are impaired, causing glucose concentration level to increase in the bloodstream. Regulating blood glucose levels as close to normal as possible leads to a substantial decrease in long-term complications of diabetes. In this paper, an intelligent online feedback-treatment strategy is presented for the control of blood glucose levels in diabetic patients using single network adaptive critic (SNAC) neural networks (which is based on nonlinear optimal control theory). A recently developed mathematical model of the nonlinear dynamics of glucose and insulin interaction in the blood system has been revised and considered for synthesizing the neural network for feedback control. The idea is to replicate the function of pancreatic insulin, i.e. to have a fairly continuous measurement of blood glucose and a situation-dependent insulin injection to the body using an external device. Detailed studies are carried out to analyze the effectiveness of this adaptive critic-based feedback medication strategy. A comparison study with linear quadratic regulator (LQR) theory shows that the proposed nonlinear approach offers some important advantages such as quicker response, avoidance of hypoglycemia problems, etc. Robustness of the proposed approach is also demonstrated from a large number of simulations considering random initial conditions and parametric uncertainties. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacteria can utilize multiple sources of carbon for growth, and for pathogenic bacteria like Mycobacterium tuberculosis, this ability is crucial for survival within the host. In addition, phenotypic changes are seen in mycobacteria grown under different carbon sources. In this study, we use Raman spectroscopy to analyze the biochemical components present in M. smegmatis cells when grown in three differently metabolized carbon sources. Our results show that carotenoid biosynthesis is enhanced when M. smegmatis is grown in glucose compared to glycerol and acetate. We demonstrate that this difference is most likely due to transcriptional upregulation of the carotenoid biosynthesis operon (crt) mediated by higher levels of the stress-responsive sigma factor SigF. Moreover, we find that increased SigF and carotenoid levels correlate with greater resistance of glucose-grown cells to oxidative stress. Thus, we demonstrate the use of Raman spectroscopy in unraveling unknown aspects of mycobacterial physiology and describe a novel effect of carbon source variation on mycobacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Imatinib, a small-molecule inhibitor of the Bcr-Abl kinase, is a successful drug for treating chronic myeloid leukemia (CML). Bcr-Abl kinase stimulates the production of H2O2, which in turn activates Abl kinase. We therefore evaluated whether N-acetyl cysteine (NAC), a ROS scavenger improves imatinib efficacy. Effects of imatinib and NAC either alone or in combination were assessed on Bcr-Abl(+) cells to measure apoptosis. Role of nitric oxide (NO) in NAC-induced enhanced cytotoxicity was assessed using pharmacological inhibitors and siRNAs of nitric oxide synthase isoforms. We report that imatinib-induced apoptosis of imatinib-resistant and imatinib-sensitive Bcr-Abl(+) CML cell lines and primary cells from CML patients is significantly enhanced by co-treatment with NAC compared to imatinib treatment alone. In contrast, another ROS scavenger glutathione reversed imatinib-mediated killing. NAC-mediated enhanced killing correlated with cleavage of caspases, PARP and up-regulation and down regulation of pro- and anti-apoptotic family of proteins, respectively. Co-treatment with NAC leads to enhanced production of nitric oxide (NO) by endothelial nitric oxide synthase (eNOS). Involvement of eNOS dependent NO in NAC-mediated enhancement of imatinib-induced cell death was confirmed by nitric oxide synthase (NOS) specific pharmacological inhibitors and siRNAs. Indeed, NO donor sodium nitroprusside (SNP) also enhanced imatinib-mediated apoptosis of Bcr-Abl(+) cells. NAC enhances imatinib-induced apoptosis of Bcr-Abl(+) cells by endothelial nitric oxide synthase-mediated production of nitric oxide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antibodies to LH/chorionic gonadotrophin receptor (LH/CG-R; molecular weight 67 000), isolated in a homogenous state (established by SDS-PAGE and ligand blotting) from sheep luteal membrane using human CG (hCG)-Sepharose affinity chromatography, were raised in three adult male rabbits (R-I, R-II and R-III). Each of the rabbits received 20-30 mu g oi the purified receptor in Freund's complete adjuvant at a time. Primary immunization was followed by booster injection at intervals. Production of receptor antibodies was monitored by (1) determining the dilution of the serum (IgG fraction) that could specifically bind 50% of I-125-LH/CG-R added and (2) analysing sera for any chance in testosterone levels. Following primary immunization and the first booster, all three rabbits exhibited a 2.5- to 6.0-fold increase in serum testosterone over basal levels and this effect was spread over a period of time (similar to 40 days) coinciding with the rise and fall of receptor antibodies. The maximal antibody titre (ED(50)) produced at this time ranged from 1:350 to 1:100 to below detectable limits for R-I, R-II and R-III respectively. Subsequent immunizations followed by the second booster resulted in a substantial increase in antibody titre (ED(50) of 1:5000) in R-I, but this was not accompanied by any change in serum testosterone over preimmune levels, suggesting that with the progress of immunization the character of the antibody produced had also changed. Two pools of antisera from R-I collected 10 days following the booster (at day 70 (bleed I) and day 290 (bleed II)) were used in further experiments. IgG isolated from bleed I but not from bleed II antiserum showed a dose-dependent stimulation of testosterone production by mouse Leydig cells in vitro, thus confirming the in vivo hormone-mimicking activity antibodies generated during the early immunization phase. The IgG fractions from both bleeds were, however, capable of inhibiting (1) I-125-hCG binding to crude sheep luteal membrane (EC(50) of 1:70 and 1:350 for bleed I and II antisera respectively) and (2) ovine LH-stimulated testosterone production by mouse Leydig cells in vitro, indicating the presence oi antagonistic antibodies irrespective of the period of time during which the rabbits were immunized. The: fact that bleed I-stimulated testosterone production could be inhibited in a dose-dependent manner by the addition of IgG from bleed II to the mouse Leydig cell in vitro assay system showed that the agonistic activity is intrinsic to the bleed I antibody. The receptor antibody (bleed II) was also capable of blocking LH action in vivo, as rabbits passively (for 24 h with LH/CG-R antiserum) as well as actively (for 130 days) immunized against LH/CG-R failed to respond to a bolus injection of LH (50 mu g). At no time, however, was the serum testosterone reduced below the basal level. This study clearly shows that, unlike with LH antibody, attempts to achieve an LH deficiency effect in vivo by resorting to immunization with hole LH receptor is difficult, as receptor antibodies exhibit both hormone-mimicking (agonistic) as well as hormone-blocking (antagonistic) activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the generation of defects when a quantum spin system is quenched through a multicritical point by changing a parameter of the Hamiltonian as t/tau, where tau is the characteristic timescale of quenching. We argue that when a quantum system is quenched across a multicritical point, the density of defects (n) in the final state is not necessarily given by the Kibble-Zurek scaling form n similar to 1/tau(d nu)/((z nu+1)), where d is the spatial dimension, and. and z are respectively the correlation length and dynamical exponent associated with the quantum critical point. We propose a generalized scaling form of the defect density given by n similar to 1/(tau d/(2z2)), where the exponent z(2) determines the behavior of the off-diagonal term of the 2 x 2 Landau-Zener matrix at the multicritical point. This scaling is valid not only at a multicritical point but also at an ordinary critical point.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Na+.C6HI209 P-, Mr=282.1, monoclinic, e2~, a=5-762(1), b=7.163(2), c=12.313(1)A, fl= 99.97 (1) °, U= 500.5 A 3, Z= 2, D m = 1.86, D x = 1.87 Mg m -s, Cu Ka, 2 = 1.5418 A, /a = 3-3 mm -1, F(000) = 292, T= 300 K, final R for 922 observed reflections is 0-042. The phosphate ester bond, P-O(6), is 1.575 (5)A, slightly shorter than the P~O bond in monopotassium phosphoenolpyruvate [1.612 (6) A] [Hosur & Viswamitra (1981). Acta Cryst. B37, 839-843]. The pyranose sugar ring takes a 4C 1 chair conformation. The conformation about the exocyclic C(5)-C(6) bond is gauche-trans. The endocyclic C-O bonds in the glucose ring are nearly equal with C(5)-O(5) = 1.435 (8) and C(1)-O(5) = 1.436 (9) A. The sodium ion has seven near neighbours within a distance of 2.9 A. The crystal structure is stabilized by hydrogen bonds between the O atoms of symmetryrelated molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work reported herein is part of an on-going programme to develop a computer code which, given the geometrical, process and material parameters of the forging operation, is able to predict the die and the billet cooling/heating characteristics in forging production. The code has been experimentally validated earlier for a single forging cycle and is now validated for a small batch production. To facilitate a step-by-step development of the code, the billet deformation has so far been limited to its surface layers, a situation akin to coining. The code has been used here to study the effects of die preheat-temperature, machine speed and rate of deformation the cooling/heating of the billet and the dies over a small batch of 150 forgings. The study shows: that there is a pre-heat temperature at which the billet temperature changes little from one forging to the next; that beyond a particular number of forgings, the machine speed ceases to have any pronounced influence on the temperature characteristics of the billet; and that increasing the rate of deformation reduces the heat loss from the billet and gives the billet a stable temperature profile with respect to the number of forgings. The code, which is simple to use, is being extended to bulk-deformation problems. Given a practical range of possible machine, billet and process specifics, the code should be able to arrive at a combination of these parameters which will give the best thermal characteristics of the die-billet system. The code is also envisaged as being useful in the design of isothermal dies and processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mr= 367.2, monoclinic, C2, a = 8.429 (1),b= 10.184(2), c= 16.570(2)A, /~= 99.18 (1) °, U= 1404.2 A 3, z = 4, D m = 1.73, D x = 1.74 Mg m -3,Cu K~, 2 = 1.5418 A, g = 2.99 mm -1, F(000) = 764,T= 300K, final R for 1524 observed reflections is0.069. The endocyclic C-O bonds in the glucose ring are nearly equal with C(5)-O(5)= 1.445 (10) and C(1)-O(5)= 1.424(10). The pyranose sugar ring adopts a 4C 1 chair conformation. The conformation about the exocyclic C(5)-C(6) bond is gauche-gauche, in contrast to gauche-trans observed in the structure of the dipotassium salt of glucose 1-phosphate. The phosphate ester bond, P-O(1), is 1.641 (6)A, slightly longer than the 'high-energy' P-,.O bond in the monopotassium salt of phosphoenolpyruvate [1.612 (6)A]. Two sodium ions are six coordinated while the third has only five neighbours.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract is not available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High concentration of L-cystine (0.25%) when present in a glucose-mineral salt medium inhibited sporulation-specific events like protease production, calcium uptake and dipicolinic acid synthesis inBacillus thuringiensis var.thuringiensis. In addition, the enzymes of the Krebs cycle from aconitase onwards were completely inhibited by a high concentration of cystine. At a low concentration of cystine (0.05%), none of the above mentioned macromolecular changes were affected. Lipid synthesis monitored by [1,214 C]-acetate incorporation into lipid as well as into whole cells was completely inhibited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

C6H11o9P2-.Ba2+.7H2o, M, = 521.5, is monoclinic, space group P21, a = 11.881 (4), b = 8.616 (5), c = 8.350 (4) A,B = 102.95 (3)0, Z = 2, U = 833.0 A 3, d m = 2.09, d c = 2.08 Mg m -3, F(000) = 516. Mo Ka (u = 0.034 mm -1) intensity data. R is 0.068 for 1603 reflections. Of the two endocyclic C-O bonds in the glucose ring, C(5)-O(5) [1.463 (23)] is longer than C(1)-O(5) [1.395 (23)A]. The pyranose sugar ring takes a 4C1 chair conformation. The Cremer-Pople puckering parameters are, 0 = 6.69 o, Q = 0.619 A and 0 = 263.7o. The conformation about the exocyclic C(5)-C(6) bond is gauche-gauche, in contrast to gauche-trans observed in the structure of glucose 1-phosphate. The phosphate ester bond, P-O(6), is 1.61 (1)A. It is similar in length to the 'high-energy' P~O bond in phosphoenolpyruvate. The Ba 2÷ ion is surrounded by nine O atoms within a distance of 2.95 A, of which seven are from water molecules. There is an intramolecular hydrogen bond between the sugar hydroxyl 0(4) and phosphate oxygen O(12).