449 resultados para Free interface

em Indian Institute of Science - Bangalore - Índia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasticity in amorphous alloys is associated with strain softening, induced by the creation of additional free volume during deformation. In this paper, the role of free volume, which was a priori in the material, on work softening was investigated. For this, an as-cast Zr-based bulk metallic glass (BMG) was systematically annealed below its glass transition temperature, so as to reduce the free volume content. The bonded-interface indentation technique is used to generate extensively deformed and well defined plastic zones. Nanoindentation was utilized to estimate the hardness of the deformed as well as undeformed regions. The results show that the structural relaxation annealing enhances the hardness and that both the subsurface shear band number density and the plastic zone size decrease with annealing time. The serrations in the nanoindentation load-displacement curves become smoother with structural relaxation. Regardless of the annealing condition, the nanohardness of the deformed regions is similar to 12-15% lower, implying that the prior free volume only changes the yield stress (or hardness) but not the relative flow stress (or the extent of strain softening). Statistical distributions of the nanohardness obtained from deformed and undeformed regions have no overlap, suggesting that shear band number density has no influence on the plastic characteristics of the deformed region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a numerical analysis of simultaneous mould filling and phase change for solidification in a two-dimensional rectangular cavity. The role of residual flow strength and temperature gradients within the solidifying domain, caused by the filling process, on the evolution of solidification interface are investigated. An implicit volume of fluid (VOF)-based algorithm has been employed for simulating the free surface flows during the filling process, while the model for solidification is based on a fixed-grid enthalpy-based control volume approach. Solidification modeling is coupled with VOF through User Defined Functions developed in the commercial computational fluid dynamics (CFD) code FLUENT 6.3.26. Comparison between results of the conventional analysis without filling effect and those of the present analysis shows that the residual flow resulting from the filling process significantly influences the progress of the solidification interface. A parametric study is also performed with variables such as cooling rate, filling velocity and filling configuration, in order to investigate the coupled effects of the buoyancy-driven flow and the residual flow on the solidification behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect on the macroscopic compressive failure features of introduction of two flexible foam layers, either together at mid-region or separately at two locations that are away from the midregion, into a glass-epoxy (G-E) system is studied in this work. In this experimental approach an attempt to look at the possible influence the foam/G-E interface region has on the way the materials respond to compressive loading is made by involving an analyses of macrofractographic features. While foam-free samples fail by extensive ear formation and separation nearer to the mid-region, the foam bearing ones display pronounced interface separation. The positioning of the foam sheet(s) has a bearing on the failure features.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single chain fragment variables (ScFvs) have been extensively employed in studying the protein-protein interactions. ScFvs derived from phage display libraries have an additional advantage of being generated against a native antigen, circumventing loss of information on conformational epitopes. In the present study, an attempt has been made to elucidate human chorionic gonadotropin (hCG)-luteinizing hormone (LH) receptor interactions by using a neutral and two inhibitory ScFvs against hCG. The objective was to dock a computationally derived model of these ScFvs onto the crystal structure of hCG and understand the differential roles of the mapped epitopes in hCG-LH receptor interactions. An anti-hCG ScFv, whose epitope was mapped previously using biochemical tools, served as the positive control for assessing the quality of docking analysis. To evaluate the role of specific side chains at the hCG-ScFv interface, binding free energy as well as residue interaction energies of complexes in solution were calculated using molecular mechanics Poisson-Boltzmann/surface area method after performing the molecular dynamic simulations on the selected hCG-ScFv models and validated using biochemical and SPR analysis. The robustness of these calculations was demonstrated by comparing the theoretically determined binding energies with the experimentally obtained kinetic parameters for hCG-ScFv complexes. Superimposition of hCG-ScFv model onto a model of hCG complexed with the 51-266 residues of LH receptor revealed importance of the residues previously thought to be unimportant for hormone binding and response. This analysis provides an alternate tool for understanding the structure-function analysis of ligand-receptor interactions. Proteins 2011;79:3108-3122. (C) 2011 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effects of dynamic contact angle models on the flow dynamics of an impinging droplet in sharp interface simulations are presented in this article. In the considered finite element scheme, the free surface is tracked using the arbitrary Lagrangian-Eulerian approach. The contact angle is incorporated into the model by replacing the curvature with the Laplace-Beltrami operator and integration by parts. Further, the Navier-slip with friction boundary condition is used to avoid stress singularities at the contact line. Our study demonstrates that the contact angle models have almost no influence on the flow dynamics of the non-wetting droplets. In computations of the wetting and partially wetting droplets, different contact angle models induce different flow dynamics, especially during recoiling. It is shown that a large value for the slip number has to be used in computations of the wetting and partially wetting droplets in order to reduce the effects of the contact angle models. Among all models, the equilibrium model is simple and easy to implement. Further, the equilibrium model also incorporates the contact angle hysteresis. Thus, the equilibrium contact angle model is preferred in sharp interface numerical schemes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HgSe and Hg0.5Cd0.5Se quantum dos (QDs) are synthesized at room temperature by a novel liquid-liquid interface method and their photodetection properties in the near-IR region are investigated. The photodetection properties of our Te-free systems are found to be comparable to those of the previously reported high performance QD vis-IR detectors including HgTe. The present synthesis indicates the cost-effectiveness of selenium based IR detectors owing to the abundance and lower toxicity of selenium compared to tellurium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The integration of Metal Organic Chemical Vapor Deposition (MOCVD) grown group III-A nitride device stacks on Si (111) substrates is critically dependent on the quality of the first AlN buffer layer grown. A Si surface that is both oxide-free and smooth is a primary requirement for nucleating such layers. A single parameter, the AlN layer growth stress, is shown to be an early (within 50 nm), clear (<0.5 GPa versus > 1GPa), and fail-safe indicator of the pre-growth surface, and the AlN quality required for successful epitaxy. Grain coalescence model for stress generation is used to correlate growth stress, the AlN-Si interface, and crystal quality. (C) 2013 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single fluid schemes that rely on an interface function for phase identification in multicomponent compressible flows are widely used to study hydrodynamic flow phenomena in several diverse applications. Simulations based on standard numerical implementation of these schemes suffer from an artificial increase in the width of the interface function owing to the numerical dissipation introduced by an upwind discretization of the governing equations. In addition, monotonicity requirements which ensure that the sharp interface function remains bounded at all times necessitate use of low-order accurate discretization strategies. This results in a significant reduction in accuracy along with a loss of intricate flow features. In this paper we develop a nonlinear transformation based interface capturing method which achieves superior accuracy without compromising the simplicity, computational efficiency and robustness of the original flow solver. A nonlinear map from the signed distance function to the sigmoid type interface function is used to effectively couple a standard single fluid shock and interface capturing scheme with a high-order accurate constrained level set reinitialization method in a way that allows for oscillation-free transport of the sharp material interface. Imposition of a maximum principle, which ensures that the multidimensional preconditioned interface capturing method does not produce new maxima or minima even in the extreme events of interface merger or breakup, allows for an explicit determination of the interface thickness in terms of the grid spacing. A narrow band method is formulated in order to localize computations pertinent to the preconditioned interface capturing method. Numerical tests in one dimension reveal a significant improvement in accuracy and convergence; in stark contrast to the conventional scheme, the proposed method retains its accuracy and convergence characteristics in a shifted reference frame. Results from the test cases in two dimensions show that the nonlinear transformation based interface capturing method outperforms both the conventional method and an interface capturing method without nonlinear transformation in resolving intricate flow features such as sheet jetting in the shock-induced cavity collapse. The ability of the proposed method in accounting for the gravitational and surface tension forces besides compressibility is demonstrated through a model fully three-dimensional problem concerning droplet splash and formation of a crownlike feature. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper explores phase formation and phase stability in free nanoparticles of binary alloys. A procedure for estimating the size and composition dependent free energies incorporating the contributions from the interfaces has been presented. Both single phase solid solution and two phase morphology containing interphase interfaces have been considered. A free energy scenario has been evaluated for two binary alloy systems Ag-Ni and Ag-Cu to predict the microstructure of the alloy nanoparticles at different size ranges as a function of composition. Both Ag-Cu and Ag-Ni systems exhibit wide bulk immiscibility. Ag-Ni nanoparticles were synthesized using the wet chemical synthesis technique whereas Ag-Cu nanoparticles were synthesized using laser ablation of a Ag-Cu target immersed in distilled water. Microstructural and compositional characterization of Ag-Ni and Ag-Cu nanoparticles on a single nanoparticle level was conducted using transmission electron microscopy. Nanoparticle microstructures observed from the microscopic investigation have been correlated with thermodynamic calculation results. It is shown that the observed two phase microstructure consisting of Ag-Ni solid solution in partial decomposed state coexisting with pure Ag phases in the case of Ag-Ni nanoparticles can be only be rationalized by invoking the tendency for phase separation of an initial solid solution with increase in nanoparticle size. Smaller sized Ag-Ni nanoparticles prefer a single phase solid solution microstructure. Due to an increase in particle size during the synthesis process the initial solid solution decomposes into an ultrafine scale phase separated microstructure. We have shown that it is necessary to invoke critical point phenomenon and wetting transition in systems showing a critical point that leads to phase separated Ag-Ni nanoparticles providing a catalytic substrate for the nucleation of equilibrium Ag over it. In the case of the Ag-Cu system, we report the experimental observation of a core shell structure at small sizes. This can be rationalized in terms of a metastable solid solution. It is argued that the nucleation barrier can prevent the formation of biphasic morphology with an internal interface. In such a situation, demixing of the solid solution can bring the system to a lower energy configuration. This has lead to the observed core-shell morphology in the Ag-Cu system during room temperature synthesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present paper analyzes the effects of plumes for heat transfer enhancement at solid-liquid interface taking both smooth and grooved surfaces. The experimental setup consists of a tank of dimensions 265 x 265 x 300 (height) containing water. The bottom surface was heated and free surface of the water was left open to the ambient. In the experiments, the bottom plate had either a smooth surface or a grooved surface. We used 90 V-grooved rough surfaces with two groove heights, 10mm and 3mm. The experiment was done with water layer depths of 90mm and 140mm, corresponding to values of aspect ratio(AR) equal to 2.9 and 1.8 respectively. Thymol blue, a pH sensitive dye, was used to visualize the flow near the heated plate. The measured heat transfer coefficients over the grooved surfaces were higher compared that over the smooth surface. The enhanced heat transport in the rough cavities cannot be ascribed to the increase in the contact area, rather it must be the local dynamics of the thermal boundary layer that changes the heat transport over the rough surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-kappa TiO2 thin films have been fabricated from a facile, combined sol-gel spin - coating technique on p and n type silicon substrate. XRD and Raman studies headed the existence of anatase phase of TiO2 with a small grain size of 18 nm. The refractive index `n' quantified from ellipsometry is 2.41. AFM studies suggest a high quality, pore free films with a fairly small surface roughness of 6 angstrom. The presence of Ti in its tetravalent state is confirmed by XPS analysis. The defect parameters observed at the interface of Si/TiO2 were studied by capacitance - voltage (C - V) and deep level transient spectroscopy (DLTS). The flat - band voltage (V-FB) and the density of slow interface states estimated are -0.9, -0.44 V and 5.24x10(10), 1.03x10(11) cm(-2); for the NMOS and PMOS capacitors, respectively. The activation energies, interface state densities and capture cross -sections measured by DLTS are E-V + 0.30, E-C - 0.21 eV; 8.73x10(11), 6.41x10(11) eV(-1) cm(-2) and 5.8x10(-23), 8.11x10(-23) cm(2) for the NMOS and PMOS structures, respectively. A low value of interface state density in both P-and N-MOS structures makes it a suitable alternate dielectric layer for CMOS applications. And also very low value of capture cross section for both the carriers due to the amphoteric nature of defect indicates that the traps are not aggressive recombination centers and possibly can not contribute to the device operation to a large extent. (C) 2015 Author(s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper highlights the microstructural features of commercially available interstitial free (IF) steel specimens deformed by equal channel angular pressing (ECAP) up to four passes following the route A. The microstructure of the samples was studied by different techniques of X-ray diffraction peak profile analysis as a function of strain (epsilon). It was found that the crystallite size is reduced substantially already at epsilon=2.3 and it does not change significantly during further deformation. At the same time, the dislocation density increases gradually up to epsilon=4.6. The dislocation densities estimated from X-ray diffraction study are found to correlate very well with the experimentally obtained yield strength of the samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the problem of singularity-free path planning for the six-degree-of-freedom parallel manipulator known as the Stewart platform manipulator. Unlike serial manipulators, the Stewart platform possesses singular configurations within the workspace where the manipulator is uncontrollable. An algorithm has been developed to construct continuous paths within the workspace of the manipulator by avoiding singularities and ill-conditioning. Given two end-poses of the manipulator, the algorithm finds out safe (well-conditioned) via points and plans a continuous path from the initial pose to the final one. When the two end-poses belong to different branches and no singularity-free path is possible, the algorithm indicates the impossibility of a valid path. A numerical example has also been presented as illustration of the path planning strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unsteady free convection boundary-layer flow in the forward stagnation-point region of a sphere, which is rotating with time-dependent angular velocity in an ambient fluid, has been studied. Both constant wall temperature and constant hear flux conditions have been considered. The non-linear coupled parabolic partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. The skin friction and the heat transfer are enhanced by the buoyancy force. The effect of the buoyancy force is found to be more pronounced for smaller Prandtl numbers than for larger Prandtl numbers. For a given buoyancy force, the heat transfer increases with an increase in Prandtl number, but the skin friction decreases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unsteady free convection flow in the stagnation-point region of a heated three-dimensional body placed in an ambient fluid is studied under boundary layer approximations. We have considered the case where there is an initial steady state that is perturbed by a step-change in the wall temperature. The non-linear coupled partial differential equations governing the free convection flow are solved numerically using a finite difference scheme. The presented results show the temporal development of the momentum and thermal boundary layer characteristics.