266 resultados para FINITE SAMPLING
em Indian Institute of Science - Bangalore - Índia
Resumo:
We consider the speech production mechanism and the asso- ciated linear source-filter model. For voiced speech sounds in particular, the source/glottal excitation is modeled as a stream of impulses and the filter as a cascade of second-order resonators. We show that the process of sampling speech signals can be modeled as filtering a stream of Dirac impulses (a model for the excitation) with a kernel function (the vocal tract response),and then sampling uniformly. We show that the problem of esti- mating the excitation is equivalent to the problem of recovering a stream of Dirac impulses from samples of a filtered version. We present associated algorithms based on the annihilating filter and also make a comparison with the classical linear prediction technique, which is well known in speech analysis. Results on synthesized as well as natural speech data are presented.
Resumo:
We address the problem of sampling and reconstruction of two-dimensional (2-D) finite-rate-of-innovation (FRI) signals. We propose a three-channel sampling method for efficiently solving the problem. We consider the sampling of a stream of 2-D Dirac impulses and a sum of 2-D unit-step functions. We propose a 2-D causal exponential function as the sampling kernel. By causality in 2-D, we mean that the function has its support restricted to the first quadrant. The advantage of using a multichannel sampling method with causal exponential sampling kernel is that standard annihilating filter or root-finding algorithms are not required. Further, the proposed method has inexpensive hardware implementation and is numerically stable as the number of Dirac impulses increases.
Resumo:
Standard approaches for ellipse fitting are based on the minimization of algebraic or geometric distance between the given data and a template ellipse. When the data are noisy and come from a partial ellipse, the state-of-the-art methods tend to produce biased ellipses. We rely on the sampling structure of the underlying signal and show that the x- and y-coordinate functions of an ellipse are finite-rate-of-innovation (FRI) signals, and that their parameters are estimable from partial data. We consider both uniform and nonuniform sampling scenarios in the presence of noise and show that the data can be modeled as a sum of random amplitude-modulated complex exponentials. A low-pass filter is used to suppress noise and approximate the data as a sum of weighted complex exponentials. The annihilating filter used in FRI approaches is applied to estimate the sampling interval in the closed form. We perform experiments on simulated and real data, and assess both objective and subjective performances in comparison with the state-of-the-art ellipse fitting methods. The proposed method produces ellipses with lesser bias. Furthermore, the mean-squared error is lesser by about 2 to 10 dB. We show the applications of ellipse fitting in iris images starting from partial edge contours, and to free-hand ellipses drawn on a touch-screen tablet.
Resumo:
We address the problem of computing the level-crossings of an analog signal from samples measured on a uniform grid. Such a problem is important, for example, in multilevel analog-to-digital (A/D) converters. The first operation in such sampling modalities is a comparator, which gives rise to a bilevel waveform. Since bilevel signals are not bandlimited, measuring the level-crossing times exactly becomes impractical within the conventional framework of Shannon sampling. In this paper, we propose a novel sub-Nyquist sampling technique for making measurements on a uniform grid and thereby for exactly computing the level-crossing times from those samples. The computational complexity of the technique is low and comprises simple arithmetic operations. We also present a finite-rate-of-innovation sampling perspective of the proposed approach and also show how exponential splines fit in naturally into the proposed sampling framework. We also discuss some concrete practical applications of the sampling technique.
Resumo:
Although uncertainties in material properties have been addressed in the design of flexible pavements, most current modeling techniques assume that pavement layers are homogeneous. The paper addresses the influence of the spatial variability of the resilient moduli of pavement layers by evaluating the effect of the variance and correlation length on the pavement responses to loading. The integration of the spatially varying log-normal random field with the finite-difference method has been achieved through an exponential autocorrelation function. The variation in the correlation length was found to have a marginal effect on the mean values of the critical strains and a noticeable effect on the standard deviation which decreases with decreases in correlation length. This reduction in the variance arises because of the spatial averaging phenomenon over the softer and stiffer zones generated because of spatial variability. The increase in the mean value of critical strains with decreasing correlation length, although minor, illustrates that pavement performance is adversely affected by the presence of spatially varying layers. The study also confirmed that the higher the variability in the pavement layer moduli, introduced through a higher value of coefficient of variation (COV), the higher the variability in the pavement response. The study concludes that ignoring spatial variability by modeling the pavement layers as homogeneous that have very short correlation lengths can result in the underestimation of the critical strains and thus an inaccurate assessment of the pavement performance. (C) 2014 American Society of Civil Engineers.
Resumo:
A plane strain elastic interaction analysis of a strip footing resting on a reinforced soil bed has been made by using a combined analytical and finite element method (FEM). In this approach the stiffness matrix for the footing has been obtained using the FEM, For the reinforced soil bed (halfplane) the stiffness matrix has been obtained using an analytical solution. For the latter, the reinforced zone has been idealised as (i) an equivalent orthotropic infinite strip (composite approach) and (ii) a multilayered system (discrete approach). In the analysis, the interface between the strip footing and reinforced halfplane has been assumed as (i) frictionless and (ii) fully bonded. The contact pressure distribution and the settlement reduction have been given for different depths of footing and scheme of reinforcement in soil. The load-deformation behaviour of the reinforced soil obtained using the above modelling has been compared with some available analytical and model test results. The equivalent orthotropic approach proposed in this paper is easy to program and is shown to predict the reinforcing effects reasonably well.
Resumo:
We present a generalization of the finite volume evolution Galerkin scheme [M. Lukacova-Medvid'ova,J. Saibertov'a, G. Warnecke, Finite volume evolution Galerkin methods for nonlinear hyperbolic systems, J. Comp. Phys. (2002) 183 533-562; M. Luacova-Medvid'ova, K.W. Morton, G. Warnecke, Finite volume evolution Galerkin (FVEG) methods for hyperbolic problems, SIAM J. Sci. Comput. (2004) 26 1-30] for hyperbolic systems with spatially varying flux functions. Our goal is to develop a genuinely multi-dimensional numerical scheme for wave propagation problems in a heterogeneous media. We illustrate our methodology for acoustic waves in a heterogeneous medium but the results can be generalized to more complex systems. The finite volume evolution Galerkin (FVEG) method is a predictor-corrector method combining the finite volume corrector step with the evolutionary predictor step. In order to evolve fluxes along the cell interfaces we use multi-dimensional approximate evolution operator. The latter is constructed using the theory of bicharacteristics under the assumption of spatially dependent wave speeds. To approximate heterogeneous medium a staggered grid approach is used. Several numerical experiments for wave propagation with continuous as well as discontinuous wave speeds confirm the robustness and reliability of the new FVEG scheme.
Resumo:
Lasers are very efficient in heating localized regions and hence they find a wide application in surface treatment processes. The surface of a material can be selectively modified to give superior wear and corrosion resistance. In laser surface-melting and welding problems, the high temperature gradient prevailing in the free surface induces a surface-tension gradient which is the dominant driving force for convection (known as thermo-capillary or Marangoni convection). It has been reported that the surface-tension driven convection plays a dominant role in determining the melt pool shape. In most of the earlier works on laser-melting and related problems, the finite difference method (FDM) has been used to solve the Navier Stokes equations [1]. Since the Reynolds number is quite high in these cases, upwinding has been used. Though upwinding gives physically realistic solutions even on a coarse grid, the results are inaccurate. McLay and Carey have solved the thermo-capillary flow in welding problems by an implicit finite element method [2]. They used the conventional Galerkin finite element method (FEM) which requires that the pressure be interpolated by one order lower than velocity (mixed interpolation). This restricts the choice of elements to certain higher order elements which need numerical integration for evaluation of element matrices. The implicit algorithm yields a system of nonlinear, unsymmetric equations which are not positive definite. Computations would be possible only with large mainframe computers.Sluzalec [3] has modeled the pulsed laser-melting problem by an explicit method (FEM). He has used the six-node triangular element with mixed interpolation. Since he has considered the buoyancy induced flow only, the velocity values are small. In the present work, an equal order explicit FEM is used to compute the thermo-capillary flow in the laser surface-melting problem. As this method permits equal order interpolation, there is no restriction in the choice of elements. Even linear elements such as the three-node triangular elements can be used. As the governing equations are solved in a sequential manner, the computer memory requirement is less. The finite element formulation is discussed in this paper along with typical numerical results.
Resumo:
We present a technique for an all-digital on-chip delay measurement system to measure the skews in a clock distribution network. It uses the principle of sub-sampling. Measurements from a prototype fabricated in a 65 nm industrial process, indicate the ability to measure delays with a resolution of 0.5ps and a DNL of 1.2 ps.
Resumo:
The details of development of the stiffness matrix for a doubly curved quadrilateral element suited for static and dynamic analysis of laminated anisotropic thin shells of revolution are reported. Expressing the assumed displacement state over the middle surface of the shell as products of one-dimensional first order Hermite polynomials, it is possible to ensure that the displacement state for the assembled set of such elements, is geometrically admissible. Monotonic convergence of total potential energy is therefore possible as the modelling is successively refined. Systematic evaluation of performance of the element is conducted, considering various examples for which analytical or other solutions are available.
Resumo:
The paper presents the results of an experimental study regarding the effect of the lateral dimension of the receiving water on the spreading, mixing, and temperature decay of a horizontal buoyant surface jet. The widths of the ambient water in the experiments have been 240, 120, 90 and 60 times the diameter of the jet nozzle. Based on the experimental data, correlations are carried out and empirical equations for prediction of jet width, thickness in vertical direction and longitudinal temperature decay are obtained. The available data of earlier investigators are included to obtain generalized equations for the spreading and temperature decay. Similarity of temperature profiles in the lateral and vertical directions is observed. The longitudinal temperature decay is found to vary inversely with distance in the flow direction and ¼th power of the densimetric Froude number.
Resumo:
An expression is derived for the probability that the determinant of an n x n matrix over a finite field vanishes; from this it is deduced that for a fixed field this probability tends to 1 as n tends to.
Resumo:
Existence of a periodic progressive wave solution to the nonlinear boundary value problem for Rayleigh surface waves of finite amplitude is demonstrated using an extension of the method of strained coordinates. The solution, obtained as a second-order perturbation of the linearized monochromatic Rayleigh wave solution, contains harmonics of all orders of the fundamental frequency. It is shown that the higher harmonic content of the wave increases with amplitude, but the slope of the waveform remains finite so long as the amplitude is less than a critical value.
Resumo:
A continuum method of analysis is presented in this paper for the problem of a smooth rigid pin in a finite composite plate subjected to uniaxial loading. The pin could be of interference, push or clearance fit. The plate is idealized to an orthotropic sheet. As the load on the plate is progressively increased, the contact along the pin-hole interface is partial above certain load levels in all three types of fit. In misfit pins (interference or clearance), such situations result in mixed boundary value problems with moving boundaries and in all of them the arc of contact and the stress and displacement fields vary nonlinearly with the applied load. In infinite domains similar problems were analysed earlier by ‘inverse formulation’ and, now, the same approach is selected for finite plates. Finite outer domains introduce analytical complexities in the satisfaction of boundary conditions. These problems are circumvented by adopting a method in which the successive integrals of boundary error functions are equated to zero. Numerical results are presented which bring out the effects of the rectangular geometry and the orthotropic property of the plate. The present solutions are the first step towards the development of special finite elements for fastener joints.