137 resultados para Energy spectra
em Indian Institute of Science - Bangalore - Índia
Resumo:
The hydromagnetic Kelvin-Helmholtz (K-H) instability problem is studied for a three-layered system analytically by arriving at the marginal instability condition. As the magnetic field directions are taken to vary in the three regions, both the angle and finite thickness effects are seen on the instability criterion. When the relative flow speed of the plasmas on the two sides of the interfaces separating the inner and the surrounding layers is U < Uc, where Uc is the critical speed, the system is stable both for symmetric and asymmetric perturbations. However, unlike the case of the interface bounded by two semiinfinite media, Uc is no longer the minimum critical speed above which the system will be unstable for all wavenumbers; another critical speed U* > Uc is introduced due to the finiteness of the system. When Uc < U < U*, the instability can set in either through the symmetric or asymmetric mode, depending on the ratio of the plasma parameters and angle between the magnetic field directions across the boundaries. The instability arises for a finite range of wavenumbers, thus giving rise to the upper and lower cut-off frequencies for the spectra of hydromagnetic surface waves generated by the K-H instability mechanism. When U > U*, both the modes are unstable for short wavelengths. The results are finally used to explain some observational features of the dependence of hydromagnetic energy spectra in the magnetosphere on the interplanetary parameters.
Resumo:
This paper reports measurements of turbulent quantities in an axisymmetric wall jet subjected to an adverse pressure gradient in a conical diffuser, in such a way that a suitably defined pressure-gradient parameter is everywhere small. Self-similarity is observed in the mean velocity profile, as well as the profiles of many turbulent quantities at sufficiently large distances from the injection slot. Autocorrelation measurements indicate that, in the region of turbulent production, the time scale of ν fluctuations is very much smaller than the time scale of u fluctuations. Based on the data on these time scales, a possible model is proposed for the Reynolds stress. One-dimensional energy spectra are obtained for the u, v and w components at several points in the wall jet. It is found that self-similarity is exhibited by the one-dimensional wavenumber spectrum of $\overline{q^2}(=\overline{u^2}+\overline{v^2}+\overline{w^2})$, if the half-width of the wall jet and the local mean velocity are used for forming the non-dimensional wavenumber. Both the autocorrelation curves and the spectra indicate the existence of periodicity in the flow. The rate of dissipation of turbulent energy is estimated from the $\overline{q^2}$ spectra, using a slightly modified version of a previously suggested method.
Influence of quantum confinement on the photoemission from superlattices of optoelectronic materials
Resumo:
We study the photoemission from quantum wire and quantum dot superlattices with graded interfaces of optoelectronic materials on the basis of newly formulated electron dispersion relations in the presence of external photo-excitation. Besides, the influence of a magnetic field on the photoemission from the aforementioned superlattices together with quantum well superlattices in the presence of a quantizing magnetic field has also been studied in this context. It has been observed taking into account HgTe/Hg1-xCdxTe and InxGa1-xAs/InP that the photoemission from these nanostructures increases with increasing photon energy in quantized steps and exhibits oscillatory dependences with the increase in carrier concentration. Besides, the photoemission decreases with increasing light intensity and wavelength, together with the fact that said emission decreases with increasing thickness exhibiting oscillatory spikes. The strong dependences of the photoemission on the light intensity reflects the direct signature of light waves on the carrier energy spectra. The content of this paper finds six applications in the fields of low dimensional systems in general. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We present results from a systematic numerical study of structural properties of an unforced, incompressible, homogeneous, and isotropic three-dimensional turbulent fluid with an initial energy spectrum that develops a cascade of kinetic energy to large wave numbers. The results are compared with those from a recently studied set of power-law initial energy spectra [C. Kalelkar and R. Pandit, Phys. Rev. E 69, 046304 (2004)] which do not exhibit such a cascade. Differences are exhibited in plots of vorticity isosurfaces, the temporal evolution of the kinetic energy-dissipation rate, and the rates of production of the mean enstrophy along the principal axes of the strain-rate tensor. A crossover between "non-cascade-type" and "cascade-type" behavior is shown numerically for a specific set of initial energy spectra.
Resumo:
We present a simplified theoretical formulation of the thermoelectric power (TP) under magnetic quantization in quantum wells (QWs) of nonlinear optical materials on the basis of a newly formulated magneto-dispersion law. We consider the anisotropies in the effective electron masses and the spin-orbit constants within the framework of k.p formalism by incorporating the influence of the crystal field splitting. The corresponding results for III-V materials form a special case of our generalized analysis under certain limiting conditions. The TP in QWs of Bismuth, II-VI, IV-VI and stressed materials has been studied by formulating appropriate electron magneto-dispersion laws. We also address the fact that the TP exhibits composite oscillations with a varying quantizing magnetic field in QWs of n-Cd3As2, n-CdGeAs2, n-InSb, p-CdS, stressed InSb, PbTe and Bismuth. This reflects the combined signatures of magnetic and spatial quantizations of the carriers in such structures. The TP also decreases with increasing electron statistics and under the condition of non-degeneracy, all the results as derived in this paper get transformed into the well-known classical equation of TP and thus confirming the compatibility test. We have also suggested an experimental method of determining the elastic constants in such systems with arbitrary carrier energy spectra from the known value of the TP. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The paper is devoted to the connection between integrability of a finite quantum system and degeneracies of its energy levels. In particular, we analyse in detail the energy spectra of finite Hubbard chains. Heilmann and Lieb demonstrated that in these systems there are crossings of levels of the same parameter-independent symmetry. We show that this apparent violation of the Wigner-von Neumann noncrossing rule follows directly from the existence of nontrivial conservation laws and is a characteristic signature of quantum integrability. The energy spectra of Hubbard chains display many instances of permanent (at all values of the coupling) twofold degeneracies that cannot be explained by parameter-independent symmetries. We relate these degeneracies to the different transformation properties of the conserved currents under spatial reflections and the particle-hole transformation and estimate the fraction of doubly degenerate states. We also discuss multiply degenerate eigenstates of the Hubbard Hamiltonian. The wavefunctions of many of these states do not depend on the coupling, which suggests the existence of an additional parameter-independent symmetry.
Resumo:
This paper reports measurements of turbulent quantities in an axisymmetric wall jet subjected to an adverse pressure gradient in a conical diffuser, in such a way that a suitably defined pressure-gradient parameter is everywhere small. Self-similarity is observed in the mean velocity profile, as well as the profiles of many turbulent quantities at sufficiently large distances from the injection slot. Autocorrelation measurements indicate that, in the region of turbulent production, the time scale of ν fluctuations is very much smaller than the time scale of u fluctuations. Based on the data on these time scales, a possible model is proposed for the Reynolds stress. One-dimensional energy spectra are obtained for the u, v and w components at several points in the wall jet. It is found that self-similarity is exhibited by the one-dimensional wavenumber spectrum of $\overline{q^2}(=\overline{u^2}+\overline{v^2}+\overline{w^2})$, if the half-width of the wall jet and the local mean velocity are used for forming the non-dimensional wavenumber. Both the autocorrelation curves and the spectra indicate the existence of periodicity in the flow. The rate of dissipation of turbulent energy is estimated from the $\overline{q^2}$ spectra, using a slightly modified version of a previously suggested method.
Resumo:
The photoemission from quantum wires and dots of effective mass superlattices of optoelectronic materials was investigated on the basis of newly formulated electron energy spectra, in the presence of external light waves, which controls the transport properties of ultra-small electronic devices under intense radiation. The effect of magnetic quantization on the photoemission from the aforementioned superlattices, together with quantum well superlattices under magnetic quantization, has also been investigated in this regard. It appears, taking HgTe/Hg1-xCdxTe and InxGa1-xAs/InP effective mass superlattices, that the photoemission from these quantized structures is enhanced with increasing photon energy in quantized steps and shows oscillatory dependences with the increasing carrier concentration. In addition, the photoemission decreases with increasing light intensity and wavelength as well as with increasing thickness exhibiting oscillatory spikes. The strong dependence of the photoemission on the light intensity reflects the direct signature of light waves on the carrier energy spectra. The content of this paper finds six different applications in the fields of low dimensional systems in general.
Resumo:
The origin of linear instability resulting in rotating sheared accretion flows has remained a controversial subject for a long time. While some explanations of such non-normal transient growth of disturbances in the Rayleigh stable limit were available for magnetized accretion flows, similar instabilities in the absence of magnetic perturbations remained unexplained. This dichotomy was resolved in two recent publications by Chattopadhyay and co-workers Mukhopadhyay and Chattopadhyay, J. Phys. A 46, 035501 (2013); Nath et al., Phys. Rev. E 88, 013010 (2013)] where it was shown that such instabilities, especially for nonmagnetized accretion flows, were introduced through interaction of the inherent stochastic noise in the system (even a ``cold'' accretion flow at 3000Kis too ``hot'' in the statistical parlance and is capable of inducing strong thermal modes) with the underlying Taylor-Couette flow profiles. Both studies, however, excluded the additional energy influx (or efflux) that could result from nonzero cross correlation of a noise perturbing the velocity flow, say, with the noise that is driving the vorticity flow (or equivalently the magnetic field and magnetic vorticity flow dynamics). Through the introduction of such a time symmetry violating effect, in this article we show that nonzero noise cross correlations essentially renormalize the strength of temporal correlations. Apart from an overall boost in the energy rate (both for spatial and temporal correlations, and hence in the ensemble averaged energy spectra), this results in mutual competition in growth rates of affected variables often resulting in suppression of oscillating Alfven waves at small times while leading to faster saturations at relatively longer time scales. The effects are seen to be more pronounced with magnetic field fluxes where the noise cross correlation magnifies the strength of the field concerned. Another remarkable feature noted specifically for the autocorrelation functions is the removal of energy degeneracy in the temporal profiles of fast growing non-normal modes leading to faster saturation with minimum oscillations. These results, including those presented in the previous two publications, now convincingly explain subcritical transition to turbulence in the linear limit for all possible situations that could now serve as the benchmark for nonlinear stability studies in Keplerian accretion disks.
Resumo:
We present the first direct-numerical-simulation study of the statistical properties of two-dimensional superfluid turbulence in the simplified, Hall-Vinen-Bekharevich-Khalatnikov two-fluid model. We show that both normalfluid and superfluid energy spectra can exhibit two power-law regimes, the first associated with an inverse cascade of energy and the second with the forward cascade of enstrophy. We quantify the mutual-friction-induced alignment of normal and superfluid velocities by obtaining probability distribution functions of the angle between them and the ratio of their moduli.
Resumo:
It is shown how suitably scaled, order-m moments, D-m(+/-), of the Elsasser vorticity fields in three-dimensional magnetohydrodynamics (MHD) can be used to identify three possible regimes for solutions of the MHD equations with magnetic Prandtl number P-M = 1. These vorticity fields are defined by omega(+/-) = curl z(+/-) = omega +/- j, where z(+/-) are Elsasser variables, and where omega and j are, respectively, the fluid vorticity and current density. This study follows recent developments in the study of three-dimensional Navier-Stokes fluid turbulence Gibbon et al., Nonlinearity 27, 2605 (2014)]. Our mathematical results are then compared with those from a variety of direct numerical simulations, which demonstrate that all solutions that have been investigated remain in only one of these regimes which has depleted nonlinearity. The exponents q(+/-) that characterize the inertial range power-law dependencies of the z(+/-) energy spectra, epsilon(+/-)(k), are then examined, and bounds are obtained. Comments are also made on (a) the generalization of our results to the case P-M not equal 1 and (b) the relation between D-m(+/-) and the order-m moments of gradients of magnetohydrodynamic fields, which are used to characterize intermittency in turbulent flows.
Resumo:
We describe here a minimal theory of tight-binding electrons moving on the square planar Cu lattice of the hole-doped cuprates and mixed quantum mechanically with their own Cooper pairs. The superconductivity occurring at the transition temperature T(c) is the long-range, d-wave symmetry phase coherence of these Cooper pairs. Fluctuations, necessarily associated with incipient long-range superconducting order, have a generic large-distance behavior near T(c). We calculate the spectral density of electrons coupled to such Cooper-pair fluctuations and show that features observed in angle resolved photoemission spectroscopy (ARPES) experiments on different cuprates above T(c) as a function of doping and temperature emerge naturally in this description. These include ``Fermi arcs'' with temperature-dependent length and an antinodal pseudogap, which fills up linearly as the temperature increases toward the pseudogap temperature. Our results agree quantitatively with experiment. Below T(c), the effects of nonzero superfluid density and thermal fluctuations are calculated and compared successfully with some recent ARPES experiments, especially the observed bending or deviation of the superconducting gap from the canonical d-wave form.
Resumo:
Conductance measurements of junctions between a high- superconductor and a metallic oxide have been carried out along the a-b plane to examine the tunnel-junction spectra. For these measurements, in situ films have been grown on c-axis oriented thin films using the pulsed laser deposition technique. Two distinctive energy gaps have been observed along with conductance peaks around zero bias. The analysis of zero-bias conductance and energy gap data suggests the presence of midgap states located at the centre of a finite energy gap. The results obtained are also in accordance with the d-wave nature of high- superconductors.
Resumo:
An attempt has been made at synthesis and in resolving some of the uncertainties related to the assignments of charge-transfer satellites in the X-ray photoelectron spectra of transition-metal and rare-earth compounds. New satellites are reported in the ligand core-hole spectra as well as in the metal core-level spectra of oxides of second- and third-row transition metals including rare earths. Satellites in the ligand levels and the metal levels tend to be mutually exclusive, a behaviour that can be understood on the basis of metal-ligand overlap. Systematics in the intensities and energy separations of satellites in the first-row transition-metal compounds have been examined in order to gain an insight into the nature of these satellites. A simple model involving the sudden approximation has been employed to explain the observed systematics in intensities of satellites appearing next to metal and ligand core levels on the basis of metal-ligand overlap.
Resumo:
Electronic excitation in H2O, H2S, H2Se and H2Te molecules has been studied by the EELS technique. Spectra of H2S and H2Se are remarkably similar with the 1b1-nd transition most intense. The intensity of the first transition 1b1-nsa1 decreases through H2O to H2Se and this transition is absent in H2Te. Transitions observed by EELS have been compared with optical absorption studies. A correlation diagram of the occupied and the excited states has been provided for these four molecules by making use of UVPES and EELS.