13 resultados para Energy spectra

em CaltechTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The energy spectra of 235U atoms sputtered from a 93% enriched 235U metal foil and a hot pressed 235U02 pellet by an 80 keV 40Ar+ beam have been measured in the range 1 eV to 1 keV. The measurements were made using a mechanical time-of-flight spectrometer in conjunction with the fission track technique for detecting 235U. The design and construction of this spectrometer are discussed in detail, and its operation is mathematically analyzed.

The results of the experiment are discussed in the context of the random collision cascade model of sputtering. The spectrum obtained by the sputtering of the 235U metal target was found to be well described by the functional form E(E+Eb)-2.77, where Eb = 5.4 eV. The 235U02 target produced a spectrum that peaked at a lower energy (~ 2 eV) and decreased somewhat more rapidly for E ≳ 100 eV.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work proposes a new simulation methodology in which variable density turbulent flows can be studied in the context of a mixing layer with or without the presence of gravity. Specifically, this methodology is developed to probe the nature of non-buoyantly-driven (i.e. isotropically-driven) or buoyantly-driven mixing deep inside a mixing layer. Numerical forcing methods are incorporated into both the velocity and scalar fields, which extends the length of time over which mixing physics can be studied. The simulation framework is designed to allow for independent variation of four non-dimensional parameters, including the Reynolds, Richardson, Atwood, and Schmidt numbers. Additionally, the governing equations are integrated in such a way to allow for the relative magnitude of buoyant energy production and non-buoyant energy production to be varied.

The computational requirements needed to implement the proposed configuration are presented. They are justified in terms of grid resolution, order of accuracy, and transport scheme. Canonical features of turbulent buoyant flows are reproduced as validation of the proposed methodology. These features include the recovery of isotropic Kolmogorov scales under buoyant and non-buoyant conditions, the recovery of anisotropic one-dimensional energy spectra under buoyant conditions, and the preservation of known statistical distributions in the scalar field, as found in other DNS studies.

This simulation methodology is used to perform a parametric study of turbulent buoyant flows to discern the effects of varying the Reynolds, Richardson, and Atwood numbers on the resulting state of mixing. The effects of the Reynolds and Atwood numbers are isolated by looking at two energy dissipation rate conditions under non-buoyant (variable density) and constant density conditions. The effects of Richardson number are isolated by varying the ratio of buoyant energy production to total energy production from zero (non-buoyant) to one (entirely buoyant) under constant Atwood number, Schmidt number, and energy dissipation rate conditions. It is found that the major differences between non-buoyant and buoyant turbulent flows are contained in the transfer spectrum and longitudinal structure functions, while all other metrics are largely similar (e.g. energy spectra, alignment characteristics of the strain-rate tensor). Also, despite the differences noted between fully buoyant and non-buoyant turbulent fields, the scalar field, in all cases, is unchanged by these. The mixing dynamics in the scalar field are found to be insensitive to the source of turbulent kinetic energy production (non-buoyant vs. buoyant).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Low Energy Telescopes on the Voyager spacecraft are used to measure the elemental composition (2 ≤ Z ≤ 28) and energy spectra (5 to 15 MeV /nucleon) of solar energetic particles (SEPs) in seven large flare events. Four flare events are selected which have SEP abundance ratios approximately independent of energy/nucleon. The abundances for these events are compared from flare to flare and are compared to solar abundances from other sources: spectroscopy of the photosphere and corona, and solar wind measurements.

The selected SEP composition results may be described by an average composition plus a systematic flare-to-flare deviation about the average. For each of the four events, the ratios of the SEP abundances to the four-flare average SEP abundances are approximately monotonic functions of nuclear charge Z in the range 6 ≤ Z ≤ 28. An exception to this Z-dependent trend occurs for He, whose abundance relative to Si is nearly the same in all four events.

The four-flare average SEP composition is significantly different from the solar composition determined by photospheric spectroscopy: The elements C, N and O are depleted in SEPs by a factor of about five relative to the elements Na, Mg, Al, Si, Ca, Cr, Fe and Ni. For some elemental abundance ratios (e.g. Mg/O), the difference between SEP and photospheric results is persistent from flare to flare and is apparently not due to a systematic difference in SEP energy/nucleon spectra between the elements, nor to propagation effects which would result in a time-dependent abundance ratio in individual flare events.

The four-flare average SEP composition is in agreement with solar wind abundance results and with a number of recent coronal abundance measurements. The evidence for a common depletion of oxygen in SEPs, the corona and the solar wind relative to the photosphere suggests that the SEPs originate in the corona and that both the SEPs and solar wind sample a coronal composition which is significantly and persistently different from that of the photosphere.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The anisotropy of 1.3 - 2.3 MeV protons in interplanetary space has been measured using the Caltech Electron/Isotope Spectrometer aboard IMP-7 for 317 6-hour periods from 72/273 to 74/2. Periods dominated by prompt solar particle events are not included. The convective and diffusive anisotropies are determined from the observed anisotropy using concurrent solar wind speed measurements and observed energy spectra. The diffusive flow of particles is found to be typically toward the sun, indicating a positive radial gradient in the particle density. This anisotropy is inconsistent with previously proposed sources of low-energy proton increases seen at 1 AU which involve continual solar acceleration.

The typical properties of this new component of low-energy cosmic rays have been determine d for this period which is near solar minimum. The particles have a median intensity of 0.06 protons/ cm^(2)-sec-sr-MeV and a mean spectral index of -3.15.The amplitude of the diffusive anisotropy is approximately proportional to the solar wind speed. The rate at which particles are diffusing toward the sun is larger than the rate at which the solar wind is convecting the particles away from the sun. The 20 to 1 proton to alpha ratio typical of this new component has been reported by Mewaldt, et al. (1975b).

A propagation model with κ_(rr) assumed independent of radius and energy is used to show that the anisotropy could be due to increases similar to those found by McDonald, et al. (1975) at ~3 AU. The interplanetary Fermi-acceleration model proposed by Fisk (1976) to explain the increases seen near 3 AU is not consistent with the ~12 per cent diffusive anisotropy found.

The dependence of the diffusive anisotropy on various parameters is shown. A strong dependence of the direction of the diffusive anisotropy on the concurrently measured magnetic field direction is found, indicating a κ_⊥ less than κ_∥ to be typical for this large data set.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Analysis of the data from the Heavy Nuclei Experiment on the HEAO-3 spacecraft has yielded the cosmic ray abundances of odd-even element pairs with atomic number, Z, in the range 33 ≤ Z ≤60, and the abundances of broad element groups in the range 62 ≤ Z ≤83, relative to iron. These data show that the cosmic ray source composition in this charge range is quite similar to that of the solar system provided an allowance is made for a source fractionation based on first ionization potential. The observations are inconsistent with a source composition which is dominated by either r-process or s-process material, whether or not an allowance is made for first ionization potential. Although the observations do not exclude a source containing the same mixture of r- and s-process material as in the solar system. the data are best fit by a source having an r- to s-process ratio of 1.22^(+0.25)_(0.21), relative to the solar system The abundances of secondary elements are consistent with the leaky box model of galactic propagation, implying a pathlength distribution similar to that which explains the abundances of nuclei with Z<29.

The energy spectra of the even elements in the range 38 ≤ Z ≤ 60 are found to have a deficiency of particles in the range ~1.5 to 3 GeV/amu, compared to iron. This deficiency may result from ionization energy loss in the interstellar medium, and is not predicted by propagation models which ignore such losses. ln addition, the energy spectra of secondary elements are found to be different to those of the primary elements. Such effects are consistent with observations of lighter nuclei, and are in qualitative agreement with galactic propagation models using a rigidity dependent escape length. The energy spectra of secondaries arising from the platinum group are found to be much steeper than those of lower Z. This effect may result from energy dependent fragmentation cross sections.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The differential energy spectra of cosmic-ray protons and He nuclei have been measured at energies up to 315 MeV/nucleon using balloon- and satellite-borne instruments. These spectra are presented for solar quiet times for the years 1966 through 1970. The data analysis is verified by extensive accelerator calibrations of the detector systems and by calculations and measurements of the production of secondary protons in the atmosphere.

The spectra of protons and He nuclei in this energy range are dominated by the solar modulation of the local interstellar spectra. The transport equation governing this process includes as parameters the solar-wind velocity, V, and a diffusion coefficient, K(r,R), which is assumed to be a scalar function of heliocentric radius, r, and magnetic rigidity, R. The interstellar spectra, jD, enter as boundary conditions on the solutions to the transport equation. Solutions to the transport equation have been calculated for a broad range of assumed values for K(r,R) and jD and have been compared with the measured spectra.

It is found that the solutions may be characterized in terms of a dimensionless parameter, ψ(r,R) = r V dr'/(K(r',R). The amount of modulation is roughly proportional to ψ. At high energies or far from the Sun, where the modulation is weak, the solution is determined primarily by the value of ψ (and the interstellar spectrum) and is not sensitive to the radial dependence of the diffusion coefficient. At low energies and for small r, where the effects of adiabatic deceleration are found to be large, the spectra are largely determined by the radial dependence of the diffusion coefficient and are not very sensitive to the magnitude of ψ or to the interstellar spectra. This lack of sensitivity to jD implies that the shape of the spectra at Earth cannot be used to determine the interstellar intensities at low energies.

Values of ψ determined from electron data were used to calculate the spectra of protons and He nuclei near Earth. Interstellar spectra of the form jD α (W - 0.25m)-2.65 for both protons and He nuclei were found to yield the best fits to the measured spectra for these values of ψ, where W is the total energy and m is the rest energy. A simple model for the diffusion coefficient was used in which the radial and rigidity dependence are separable and K is independent of radius inside a modulation region which has a boundary at a distance D. Good agreement was found between the measured and calculated spectra for the years 1965 through 1968, using typical boundary distances of 2.7 and 6.1 A.U. The proton spectra observed in 1969 and 1970 were flatter than in previous years. This flattening could be explained in part by an increase in D, but also seemed to require that a noticeable fraction of the observed protons at energies as high at 50 to 100 MeV be attributed to quiet-time solar emission. The turnup in the spectra at low energies observed in all years was also attributed to solar emission. The diffusion coefficient used to fit the 1965 spectra is in reasonable agreement with that determined from the power spectra of the interplanetary magnetic field (Jokipii and Coleman, 1968). We find a factor of roughly 3 increase in ψ from 1965 to 1970, corresponding to the roughly order of magnitude decrease in the proton intensity at 250 MeV. The change in ψ might be attributed to a decrease in the diffusion coefficient, or, if the diffusion coefficient is essentially unchanged over that period (Mathews et al., 1971), might be attributed to an increase in the boundary distance, D.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The energy spectra of tritons and Helium-3 nuclei from the reactions 3He(d,t)2p, 3H(d,3He)2n, 3He(d,3He)pn, and 3H(d,t)pn were measured between 6° and 20° at a bombarding energy of 10.9 MeV. An upper limit of 5 μb/sr. was obtained for producing a bound di-neutron at 6° and 7.5°. The 3He(d,t)2p and 3H(d,3He)2n data, together with previous measurements at higher energies, have been used to investigate whether one can unambiguously extract information on the two-nucleon system from these three-body final state reactions. As an aid to these theoretical investigations, Born approximation calculations were made employing realistic nucleon-nucleon potentials and an antisymmetrized final state wave function for the five-particle system. These calculations reproduce many of the features observed in the experimental data and indicate that the role of exchange processes cannot be ignored. The results show that previous attempts to obtain information on the neutron-neutron scattering length from the 3H(d,3He)2n reaction may have seriously overestimated the precision that could be attained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Precise measurements of the total reaction cross section for 3He(3He,2p)4He He have been made in the range of center-of-mass energies between 1100 keV and 80 keV. A differentially pumped gas target modified to operate with a limited quantity of the target gas was employed to minimize the uncertainties in the primary energy and energy straggle. Beam integration inside the target gas was carried out by a calorimetric device which measures the total energy spent in a heat sink rather than the total charge in a Faraday cup. Proton energy spectra have been obtained using a counter telescope consisting of a gas proportional counter and a surface barrier detector and angular distributions of these protons have been measured at seven bombarding energies. Cross section factors, S(E), have been calculated from the total cross sections and fitted to a linear function of energy over different ranges of energy. For Ecm < 500 keV

S(Ecm) = S0 + S1 Ecm

where S0 = (5.0 +0.6-0.4) MeV - barns and S1 = (-1.8 ± 0.5) barns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis consists of three separate studies of roles that black holes might play in our universe.

In the first part we formulate a statistical method for inferring the cosmological parameters of our universe from LIGO/VIRGO measurements of the gravitational waves produced by coalescing black-hole/neutron-star binaries. This method is based on the cosmological distance-redshift relation, with "luminosity distances" determined directly, and redshifts indirectly, from the gravitational waveforms. Using the current estimates of binary coalescence rates and projected "advanced" LIGO noise spectra, we conclude that by our method the Hubble constant should be measurable to within an error of a few percent. The errors for the mean density of the universe and the cosmological constant will depend strongly on the size of the universe, varying from about 10% for a "small" universe up to and beyond 100% for a "large" universe. We further study the effects of random gravitational lensing and find that it may strongly impair the determination of the cosmological constant.

In the second part of this thesis we disprove a conjecture that black holes cannot form in an early, inflationary era of our universe, because of a quantum-field-theory induced instability of the black-hole horizon. This instability was supposed to arise from the difference in temperatures of any black-hole horizon and the inflationary cosmological horizon; it was thought that this temperature difference would make every quantum state that is regular at the cosmological horizon be singular at the black-hole horizon. We disprove this conjecture by explicitly constructing a quantum vacuum state that is everywhere regular for a massless scalar field. We further show that this quantum state has all the nice thermal properties that one has come to expect of "good" vacuum states, both at the black-hole horizon and at the cosmological horizon.

In the third part of the thesis we study the evolution and implications of a hypothetical primordial black hole that might have found its way into the center of the Sun or any other solar-type star. As a foundation for our analysis, we generalize the mixing-length theory of convection to an optically thick, spherically symmetric accretion flow (and find in passing that the radial stretching of the inflowing fluid elements leads to a modification of the standard Schwarzschild criterion for convection). When the accretion is that of solar matter onto the primordial hole, the rotation of the Sun causes centrifugal hangup of the inflow near the hole, resulting in an "accretion torus" which produces an enhanced outflow of heat. We find, however, that the turbulent viscosity, which accompanies the convective transport of this heat, extracts angular momentum from the inflowing gas, thereby buffering the torus into a lower luminosity than one might have expected. As a result, the solar surface will not be influenced noticeably by the torus's luminosity until at most three days before the Sun is finally devoured by the black hole. As a simple consequence, accretion onto a black hole inside the Sun cannot be an answer to the solar neutrino puzzle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reaction 32S(3He, α) 31S has been used to locate 42 levels in 31S. For 11 of the first 17 levels ℓn-values have been determined. The first 6 excited states of 31S have been studied by applying the particle-gamma correlation method of Litherland and Ferguson (their Method II) to the reaction 32S(3He, αγ) 31S. The resulting spins and parities are: EX, Jπ = 1.25 MeV, 3/2+; 2.23 MeV, 5/2+; 3.08 MeV, 1/2+; 3.29 MeV, 5/2+, 3/2+; 3.35 MeV, 7/2, 3/2; 3.44 MeV, 3/2+. Mixing and branching ratios have also been determined. The ground state Q-value for the reaction 32S(3He, α)31S has been measured to be 5.538 ± 0.006 MeV. Analysis of the spectra of the reaction 32S(3He, α)33Cl which were obtained as a by-product of the spectra of the reaction 32S(3He, α) 31S located levels in 33Cl at the following excitation energies: 0, 810 ± 9, (1978 ± 14), 2351 ± 9, 2686 ± 8, 2848 ± 9 (a known doublet), 2980 ± 9, and 4119 ± 10 keV. The 2.0 MeV level was only weakly populated, and to confirm its existence the reaction 36Ar(p, α)33Cl has been studied. In this reaction the 2.0 MeV level was strongly populated and the measured excitation energy was 1999 ± 20 keV. The experimental results for 31S and 33Cl are compared with their analogs and with nuclear model predictions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In view of recent interest in the Cl37 (ʋ solar’e-)Ar37 reaction cross section, information on some aspects of mass 37 nuclei has been obtained using the K39 (d, ∝) Ar37 and Cl35 (He3, p) Ar37 reactions. Ar37 levels have been found at 0, 1.41, 1.62, 2.22, 2.50, 2.80, 3.17, 3.27, 3.53, 3.61, 3.71, (3.75), (3.90), 3.94, 4.02, (4.21), 4.28, 4.32, 4.40, 4.45, 4.58, 4.63, 4.74, 4.89, 4.98, 5.05, 5.10, 5.13, 5.21, 5.35, 5.41, 5.44, 5.54, 5.58, 5.67, 5.77, and 5.85 MeV (the underlined values correspond to previously tabulated levels). The nuclear temperature calculated from the Ar37 level density is 1.4 MeV. Angular distributions of the lowest six levels with the K39 (d, ∝) Ar37 reaction at Ed = 10 MeV indicate a dominant direct interaction mechanism and the inapplicability of the 2I + 1 rule of the statistical model. Comparison of the spectra obtained with the K39 (d, ∝) Ar37 and Cl35 (He3, p) Ar37 reactions leads to the suggestion that the 5.13-MeV level is the T = 3/2 Cl37 ground state analog. The ground state Q-value of the Ca40 (p, ∝) K37 reaction has been measured: -5179 ± 9 keV. This value implies a K37 mass excess of -24804 ± 10 keV. Description of a NMR magnetometer and a sixteen-detector array used in conjunction with a 61-cm double-focusing magnetic spectrometer are included in appendices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental measurements of rate of energy loss were made for protons of energy .5 to 1.6 MeV channeling through 1 μm thick silicon targets along the <110>, <111>, and <211> axial directions, and the {100}, {110}, {111}, and {211} planar directions. A .05% resolution automatically controlled magnetic spectrometer was used. The data are presented graphically along with an extensive summary of data in the literature. The data taken cover a wider range of channels than has previously been examined, and are in agreement with the data of F. Eisen, et al., Radd. Eff. 13, 93 (1972).

The theory in the literature for channeling energy loss due to interaction with local electrons, core electrons, and distant valence electrons of the crystal atoms is summarized. Straggling is analyzed, and a computer program which calculates energy loss and straggling using this theory and the Moliere approximation to the Thomas Fermi potential, VTF, and the detailed silicon crystal structure is described. Values for the local electron density Zloc in each of the channels listed above are extracted from the data by graphical matching of the experimental and computer results.

Zeroth and second order contributions to Zloc as a function of distance from the center of the channel were computed from ∇2VTF = 4πρ for various channels in silicon. For data taken in this work and data of F. Eisen, et al., Rad. Eff. 13, 93 (1972), the calculated zeroth order contribution to Zloc lies between the experimentally extracted Zloc values obtained by using the peak and the leading edge of the transmission spectra, suggesting that the observed straggling is due both to statistical fluctuations and to path variation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A review of the theory of electron scattering indicates that low incident beam energies and large scattering angles are the favorable conditions for the observation of optically forbidden transitions in atoms and molecules.

An apparatus capable of yielding electron impact spectra at 90° with incident electron beam energies between 30 and 50 electron volts is described. The resolution of the instrument is about 1 electron volt.

Impact spectra of thirteen molecules have been obtained. Known forbidden transitions to the helium 23S, the hydrogen b3Ʃ+u, the nitrogen A3Ʃ+u, B3πg, a’πg, and C3πu, the carbon monoxide a3π, the ethylene ᾶ3B1u, and the benzene ᾶ3B1u states from the corresponding ground states have been observed.

In addition, singlet-triplet vertical transitions in acetylene, propyne, propadiene, norbornadiene and quadricyclene, peaking at 5.9, 5.9, 4.5, 3.8, and 4.0 ev (±0.2 ev), respectively, have been observed and assigned for the first time.