25 resultados para Energy measurement
em Indian Institute of Science - Bangalore - Índia
Resumo:
A microcontroller based, thermal energy meter cum controller (TEMC) suitable for solar thermal systems has been developed. It monitors solar radiation, ambient temperature, fluid flow rate, and temperature of fluid at various locations of the system and computes the energy transfer rate. It also controls the operation of the fluid-circulating pump depending on the temperature difference across the solar collector field. The accuracy of energy measurement is +/-1.5%. The instrument has been tested in a solar water heating system. Its operation became automatic with savings in electrical energy consumption of pump by 30% on cloudy days.
Resumo:
The measurement of surface energy balance over a land surface in an open area in Bangalore is reported. Measurements of all variables needed to calculate the surface energy balance on time scales longer than a week are made. Components of radiative fluxes are measured while sensible and latent heat fluxes are based on the bulk method using measurements made at two levels on a micrometeorological tower of 10 m height. The bulk flux formulation is verified by comparing its fluxes with direct fluxes using sonic anemometer data sampled at 10 Hz. Soil temperature is measured at 4 depths. Data have been continuously collected for over 6 months covering pre-monsoon and monsoon periods during the year 2006. The study first addresses the issue of getting the fluxes accurately. It is shown that water vapour measurements are the most crucial. A bias of 0.25% in relative humidity, which is well above the normal accuracy assumed the manufacturers but achievable in the field using a combination of laboratory calibration and field intercomparisons, results in about 20 W m(-2) change in the latent heat flux on the seasonal time scale. When seen on the seasonal time scale, the net longwave radiation is the largest energy loss term at the experimental site. The seasonal variation in the energy sink term is small compared to that in the energy source term.
Resumo:
Based on the measurements of Alcock and Zador, Grundy et al. estimated an uncertainty of the order of +/- 5 kJ mol(-1) for the standard Gibbs energy of formation of MnO in a recent assessment. Since the evaluation of thermodynamic data for the higher oxides Mn3O4, Mn2O3, and MnO2 depends on values for MnO, a redetermination of its Gibbs energy of formation was undertaken in the temperature range from 875 to 1300 K using a solid-state electrochemical cell incorporating yttria-doped thoria (YDT) as the solid electrolyte and Fe + Fe1-delta O as the reference electrode. The cell can be presented as Pt, Mn + MnO/YDT/Fe + Fe1+delta O, Pt Since the metals Fe and Mn undergo phase transitions in the temperature range of measurement, the reversible emf of the cell is represented by the three linear segments. Combining the emf with the oxygen potential for the reference electrode, the standard Gibbs energy of formation of MnO from alpha-Mn and gaseous diatomic oxygen in the temperature range from 875 to 980 K is obtained as: Delta G(f)(o)/Jmol(-1)(+/- 250) = -385624 + 73.071T From 980 to 1300 K the Gibbs energy of formation of MnO from beta-Mn and oxygen gas is given by: Delta G(f)(o)/Jmol(-1)(+/- 250) = -387850 + 75.36T The new data are in excellent agreement with the earlier measurements of Alcock and Zador. Grundy et al. incorrectly analyzed the data of Alcock and Zador showing relatively large difference (+/- 5 kJ mol(-1)) in Gibbs energies of MnO from their two cells with Fe + Fe1-delta O and Ni + NiO as reference electrodes. Thermodynamic data for MnO is reassessed in the light of the new measurements. A table of refined thermodynamic data for MnO from 298.15 to 2000 K is presented.
Resumo:
Phase relations in the system Ca-Pb-O at 1100 K have been determined by equilibrating 18 compositions in the ternary and identifying the phases present in quenched samples by X-ray diffraction and energy dispersive X-ray analysis (EDX). Only one ternary compound Ca2PbO4 was found to be present. The compound coexists with CaO and PbO. The intermetallic compounds Ca2Pb, Ca5Pb3 and CaPb and liquid alloys are in equilibrium with CaO. The standard Gibbs energies of formation of Ca2PbO4 (880 - 1100 K) and Pb3O4 (770 - 910 K) were determined using solid-state cells based on yttria-stabilized zirconia as the solid electrolyte. Pure oxygen gas at 0.1 MPa was used as the reference electrode. For measurements on Ca2PbO4, a novel cell design with three electrodes in series, separated by solid electrolyte membranes, was used to avoid polarization of the electrode containing three solid phases. Two three-phase electrodes were used. The first absorbs the electrochemical flux of oxygen from the reference electrode to the measuring electrode. The other three-phase electrode, which is unaffected by the oxygen flux through the solid electrolyte, is used for electromotive force (EMF) measurement. The results from EMF studies were cross-checked using thermogravimetry (TG) under controlled oxygen partial pressures. The stability of Pb3O4 was investigated using a conventional solid-state cell with RuO2 electrodes. The results can be summarized by the following equations: 2CaO + PbO +1/2O(2) --> Ca2PbO4 Delta(r)G degrees/J mol(-1) = (- 128340 + 93.21 T/K) +/- 200 3PbO + 1/2O(2) --> Pb3O4 Delta(r)G degrees/J mol(-1) = (- 70060 + 77.5 T/K) +/- 150
Resumo:
The Gibbs' energy offormation of the intermetallic compound URh3has been measured in the temperature range 980 to 1320 K using an oxide solid state cell incorporating yttria-doped thoria as the solid electrolyte and a mixture of manganese and manganese oxide as the reference electrode. The cell can be represented as Pt, Mn + MnO I (Y203)Th02 I Rh + URh3 + U02 + x' Rh, Pt The reversible emf of the cell was a linear function of temperature E = 15.60 +0.0237 T (±0.8) mY. Using auxiliary thermodynamic data for MnO and U02+ x the Gibbs' energy of formation of URh3 from component metals has been computed. The results can be expressed by the equation L'.G?< URh3 > = -316240 + 13.22 T (± 3000) J mol-1. The "third-law" enthalpy of formation of URh3at 298 K is -293.2 (± 4) kJ mol-1, significantly more negative than the value of -181.5 kJ mol-1 calculated using Miedema's model.
Resumo:
A modified DLTS technique is proposed for the direct measurement of capture cross-section of MOS surface states. The nature of temperature and energy dependence σn is inferred from data analysis. Temperature dependence of σn is shown to be consistent with the observed DLTS line shapes.
Resumo:
A simple technique for determining the energy sensitivities for the thermographic recording of laser beams is described. The principle behind this technique is that, if a laser beam with a known spatial distribution such as a Gaussian profile is used for imaging, the radius of the thermal image formed depends uniquely on the intensity of the impinging beam. Thus by measuring the radii of the images produced for different incident beam intensities the minimum intensity necessary (that is, the threshold) for thermographic imaging is found. The diameter of the laser beam can also be found from this measurement. A simple analysis based on the temperature distribution in the laser heated material shows that there is an inverse square root dependence on pulse duration or period of exposure for the energy fluence of the laser beam required, both for the threshold and the subsequent increase in the size of the recording. It has also been shown that except for low intensity, long duration exposure on very low conductivity materials, heat losses are not very significant.
Resumo:
The purpose of this article is to report the experience of design and testing of orifice plate-based flow measuring systems for evaluation of air leakages in components of air conditioning systems. Two of the flow measuring stations were designed with a beta value of 0.405 and 0.418. The third was a dual path unit with orifice plates of beta value 0.613 and 0.525. The flow rates covered with all the four were from 4-94 l/s and the range of Reynolds numbers is from 5600 to 76,000. The coefficients of discharge were evaluated and compared with the Stolz equation. Measured C-d values are generally higher than those obtained from the equation, the deviations being larger in the low Reynolds number region. Further, it is observed that a second-degree polynomial is inadequate to relate the pressure drop and flow rate. The lower Reynolds number limits set by standards appear to be somewhat conservative.
Resumo:
We study wireless multihop energy harvesting sensor networks employed for random field estimation. The sensors sense the random field and generate data that is to be sent to a fusion node for estimation. Each sensor has an energy harvesting source and can operate in two modes: Wake and Sleep. We consider the problem of obtaining jointly optimal power control, routing and scheduling policies that ensure a fair utilization of network resources. This problem has a high computational complexity. Therefore, we develop a computationally efficient suboptimal approach to obtain good solutions to this problem. We study the optimal solution and performance of the suboptimal approach through some numerical examples.
Resumo:
Attempts are made to measure activities of both components of a binary alloy (A�B) at 650 K using a solid-state galvanic cell incorporating a new composite solid electrolyte. Since the ionic conductivity of the composite solid electrolyte is three orders of magnitude higher than that of pure CaF2, the cell can be operated at lower temperatures. The alloy phase is equilibrated in separate experiments with flourides of each component and fluorine potential is measured. The mixture of the alloy (A�B) and the fluoride of the more reactive component (BF2) is stable, while (A�B) + AF2 mixture is metastable, Factors governing the possible use of metastable equilibria have been elucidated in this study. In the Co�Ni system, where the difference in Gibbs energies of formation of the fluorides is 21.4 kJ/mol, emf of the cell with metastable phases at the electrode is constant for periods ranging from 90 to 160 ks depending on alloy composition. Subsequently, the emf decreases because of the onset of the displacement reaction. In the Ni�Mn system, measurement of the activity of Ni using metastable equilibria is not fully successful at 650 K because of the large driving force for the displacement reaction (208.8 kJ/mol). Critical factors in the application of metastable equilibria are the driving force for displacement reaction and diffusion coefficients in both the alloy and fluoride solid solution.
Resumo:
In this note we demonstrate the use of top polarization in the study of t (t) over bar resonances at the LHC, in the possible case where the dynamics implies a non-zero top polarization. As a probe of top polarization we construct an asymmetry in the decay-lepton azimuthal angle distribution (corresponding to the sign of cos phi(l)) in the laboratory. The asymmetry is non-vanishing even for a symmetric collider like the LHC, where a positive z axis is not uniquely defined. The angular distribution of the leptons has the advantage of being a faithful top-spin analyzer, unaffected by possible anomalous tbW couplings, to linear order. We study, for purposes of demonstration, the case of a Z' as might exist in the little Higgs models. We identify kinematic cuts which ensure that our asymmetry reflects the polarization in sign and magnitude. We investigate possibilities at the LHC with two energy options: root s = 14TeV and root s = 7TeV, as well as at the Tevatron. At the LHC the model predicts net top quark polarization of the order of a few per cent for M-Z' similar or equal to 1200GeV, being as high as 10% for a smaller mass of the Z' of 700GeV and for the largest allowed coupling in the model, the values being higher for the 7TeV option. These polarizations translate to a deviation from the standard-model value of azimuthal asymmetry of up to about 4% (7%) for 14 (7) TeV LHC, whereas for the Tevatron, values as high as 12% are attained. For the 14TeV LHC with an integrated luminosity of 10 fb(-1), these numbers translate into a 3 sigma sensitivity over a large part of the range 500 less than or similar to M-Z' less than or similar to 1500GeV.
Resumo:
The effects of 100 MeV Oxygen and 200 MeV Silver ions on the structural and transport properties of YBCO thin films are reported. Both normal state and superconducting properties were studied on Laser ablated and high pressure oxygen sputtered films. Precise electrical resistance and critical current measurements near T-c were made and the data obtained were analysed in the light of existing models of para-coherence near T-c and the other aspects of radiation damage arising from microstructural studies such as atomic force microscopy (AFM). There was evidence of sputtering by high energy ions from AFM measurement. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Solid oxide galvanic cells using CaO-ZrO2 and CaO-ZrO2 in combination with YO1.5-ThO2 as electrolyte were used to determine the free energy of formation of hercynite from 750–1600°C. The formation reaction is 2Fe(s,1) + O2(g) + Al2O3(α) = 2FeO.Al2O3(s)for which ΔG° = − 139,790 + 32.83T (±300) cals. (750–1536°C) ΔG° = − 146,390 + 36.48T (±300) cals. (1536–1700°C)These measurements can be used to resolve the discrepancies that exist in published thermochemical data, and provide an accurate oxygen potential standard for calibrating and assessing the performance of oxygen probes under steelmaking conditions.
Resumo:
The oxygen content of liquid Ni-Mn alloy equilibrated with spinel solid solution, (Ni,Mn)O. (1 +x)A12O3, and α-Al2O3 has been measured by suction sampling and inert gas fusion analysis. The corresponding oxygen potential of the three-phase system has been determined with a solid state cell incorporating (Y2O3)ThO2 as the solid electrolyte and Cr + Cr2O3 as the reference electrode. The equilibrium composition of the spinel phase formed at the interface of the alloy and alumina crucible was obtained using EPMA. The experimental data are compared with a thermodynamic model based on the free energies of formation of end-member spinels, free energy of solution of oxygen in liquid nickel, interaction parameters, and the activities in liquid Ni-Mn alloy and spinel solid solution. Mixing properties of the spinel solid solution are derived from a cation distribution model. The computational results agree with the experimental data on oxygen concentration, potential, and composition of the spinel phase.