444 resultados para Electrical behavior
em Indian Institute of Science - Bangalore - Índia
Resumo:
Undoped and Sn-doped WO3 thin films were grown on cleaned glass substrates by chemical spray pyrolysis, using ammonium tungstate (NH4)(2)WO4 as the host precursor and tin chloride (SnCl4 center dot 5H(2)O) as the source of dopant. The XRD spectra confirm the monoclinic structure with a sharp narrow peak along (200) direction along with other peaks of low relative intensities for all the samples. On Sn doping, the films exhibit reduced crystallinity relative to the undoped film. The standard deviation for relative peak intensity with dopant concentration shows enhancement in heterogeneous nucleation growth. As evident from SEM images, on Sn doping, appearance of island-like structure (i.e., cluster of primary crystallites at few places) takes place. The transmittance has been found to decrease in all the Sn-doped films. The optical band gap has been calculated for both direct and indirect transitions. On Sn doping, the direct band gap shows a red shift and becomes 2.89 eV at 2 at.% doping. Two distinct peaks, one blue emission at 408 nm and other green emission at 533 nm, have been found in the PL spectra. Electrical conductivity has been found to increase with Sn doping.
Resumo:
Homogeneous thin films of Sr(0.6)Ca(0.4)TiO(3) (SCT40) and asymmetric multilayer of SrTiO(3) (STO) and CaTiO(3) (CTO) were fabricated on Pt/Ti/SiO(2)/Si substrates by using pulsed laser deposition technique. The electrical behavior of films was observed within a temperature range of 153 K-373 K. A feeble dielectric peak of SCT40 thin film at 273 K is justified as paraelectric to antiferroelectric phase transition. Moreover, the Curie-Weiss temperature, determined from the epsilon'(T) data above the transition temperature is found to be negative. Using Landau theory, the negative Curie-Weiss temperature is interpreted in terms of an antiferroelectric transition. The asymmetric multilayer exhibits a broad dielectric peak at 273 K. and is attributed to interdiffusion at several interfaces of multilayer. The average dielectric constants for homogeneous Sr(0.6)Ca(0.4)TiO(3) films (similar to 650) and asymmetric multilayered films (similar to 350) at room temperature are recognized as a consequence of grain size effect. Small frequency dispersion in the real part of the dielectric constants and relatively low dielectric losses for both cases ensure high quality of the films applicable for next generation integrated devices. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Glass nanocomposites in the system (100 - x)Li2B4O7-xSrBi(2)Ta(2)O(9) (0 less than or equal to x less than or equal to 22.5, in molar ratio) were fabricated via a melt quenching technique followed by controlled heat-treatment. The as-quenched samples were confirmed to be glassy and amorphous by differential thermal analysis (DTA) and X-ray powder diffraction (XRD) techniques, respectively. The phase formation and crystallite size of the heat-treated samples (glass nanocomposites) were monitored by XRD and transmission electron microscopy (TEM). The relative permittivities (epsilon(tau)') of the glass nanocomposites for different compositions were found to lie in between that of the parent host glass (Li2B4O7) and strontium bismuth tantalate (SBT) ceramic in the frequency range 100 Hz-40 MHz at 300 K, whereas the dielectric loss (D) of the glass nanocomposite was less than that of both the parent phases. Among the various dielectric models employed to predict the effective relative permittivity of the glass nanocomposite, the one obtained using the Maxwell's model was in good agreement with the experimentally observed value. Impedance analysis was employed to rationalize the electrical behavior of the glasses and glass nanocomposites. The pyroelectric response of the glasses and glass nanocomposites was monitored as a function of temperature and the pyroelectric coefficient for glass and glass nanocomposite (x = 20) at 300 K were 27 muC m(-2) K-1 and 53 muC m(-2) K-1, respectively. The ferroelectric behavior of these glass nanocomposites was established by P vs. E hysteresis loop studies. The remnant polarization (P-r) of the glass nanocomposite increases with increase in SBT content. The coercive field (E-c) and P-r for the glass nanocomposite (x = 20) were 727 V cm(-1) and 0.527 muC cm(-2), respectively. The optical transmission properties of these glass nanocomposites were found to be composition dependent. The refractive index (n = 1.722), optical polarizability (am = 1.266 6 10 23 cm 3) and third-order nonlinear optical susceptibility (x(3) = 3.046 6 10(-21) cm(3)) of the glass nanocomposite (x = 15) were larger than those of the as-quenched glass. Second harmonic generation (SHG) was observed in transparent glass nanocomposites and the d(eff) for the glass nanocomposite (x = 20) was found to be 0.373 pm V-1.
Resumo:
Transparent glasses in the system (1−x)Li2B4O7–xBi2WO6 (0≤x≤0.35) were prepared via melt quenching technique. Differential thermal analysis was employed to characterize the as-quenched glasses. Glass-ceramics with high optical transparency were obtained by controlled heat-treatment of the glasses at 720 K for 6 h. The amorphous nature of the as-quenched glass and crystallinity of glass-ceramics were confirmed by X-ray powder diffraction studies. High resolution transmission electron microscopy (HRTEM) shows the presence of nearly spherical nanocrystallites of Bi2WO6 in Li2B4O7 glass matrix. Capacitance and dielectric loss measurements were carried out as a function of temperature (300–870 K) in the frequency range 100 Hz–40 MHz. Impedance spectroscopy employed to rationalize the electrical behavior of glasses and glass-ceramics suggest the coexistence of electronic and ionic conduction in these materials. The thermal activation energies for the electronic conduction and ionic conduction were also estimated based on the Arrhenius plots.
Resumo:
The thermal properties and electrical-switching behavior of semiconducting chalcogenide SbxSe55-xTe45 (2 <= x <= 9) glasses have been investigated by alternating differential scanning calorimetry and electrical-switching experiments, respectively. The addition of Sb is found to enhance the glass forming tendency and stability as revealed by the decrease in non-reversing enthalpy Delta H-nr. and an increase in the glass-transition width Delta T-g. Further, the glass-transition temperature of SbxSe55-xTe45 glasses, which is a measure of network connectivity, exhibits a subtle increase, suggesting a meager network growth with the addition of Sb. The crystallization temperature is also observed to increase with Sb content. The SbxSe55-xTe45 glasses (2 <= x <= 9) are found to exhibit memory type of electrical switching, which can be attributed to the polymeric nature of network and high devitrifying ability. The metallicity factor has been found to dominate over the network connectivity and rigidity in the compositional dependence of switching voltage. which shows a profound decrease with the addition of Sb.
Resumo:
This paper presents the results on a resin-rich machine insulation system subjected to varying stresses such as electrical (2.6 to 13.3 MV/m) and thermal (40 to 155° C) acting together. Accelerated electro-thermal aging experiments subsequently have been performed to understand the insulation degradation The interpretations are based on several measured properties like capacitance, loss tangent, ac resistance, leakage current, and partial discharge quantities. The results indicate that the changes in properties are not significant below a certain temperature for any applied stress, Beyond this temperature large variations are observed even for low electrical stresses. Electrothermal aging studies reveal that the acceleration of the insulation degradation and the ultimate time to failure depends on the relative values of temperature and voltage stresses. At lower temperatures, below critical, material characteristics of the system predominate whereas beyond this temperature, other phenomena come into play causing insulation deterioration. During aging under combined stresses, it appears that the prevailing temperature of the system has a significant role in the insulation degradation and ultimate failure.
Resumo:
Bulk Ge7Se93-xSbx (21 <= x <= 32) glasses are prepared by melt quenching method and electrical switching studies have been undertaken on these samples to elucidate the type of switching and the composition and thickness dependence of switching voltages. On the basis of the compressibility and atomic radii, it has been previously observed that Se-based glasses exhibit memory switching behavior. However, the present results indicate that Ge7Se93-xSbx glasses exhibit threshold type electrical switching with high switching voltages. Further, these samples are found to show fluctuations in the current-voltage (I-V) characteristics. The observed threshold behavior of Ge7Se93-xSbx glasses has been understood on the basis of larger atomic radii and lesser compressibilities of Sb and Ge. Further. the high switching voltages and fluctuations in the I-V characteristics of Ge-Se-Sb samples can be attributed to the high resistance of the samples and the difference in thermal conductivities of different structural units constituting the local structure of these glasses. The switching voltages of Ge7Se93-xSbx glasses have been found to decrease with the increase in the Sb concentration. The observed composition dependence of switching voltages has been understood on the basis of higher metallicity of the Sb additive and also in the light of the Chemically Ordered Network (CON) model. Further, the thickness dependence of switching voltages has been studied to reassert the mechanism of switching.
Resumo:
Electrical Switching Studies on bulk Ge10Se90-xTlx ( 15 <= x <= 34) glasses have been undertaken to examine the type of switching, composition and thickness dependence of switching voltages. Unlike Ge-Se-Tl thin films which exhibit memory switching, the bulk Ge10Se90-xTlx glasses are found to exhibit threshold type switching with fluctuations seen in their current-voltage (I-V) characteristics. Further, it is observed that the switching voltages (V-T) of Ge10Se90-xTlx glasses decrease with the increase in the Tl concentration. An effort has been made to understand the observed composition dependence on the basis of nature of bonding of Tl atoms and a decrease in the chemical disorder with composition. In addition. the network connectivity and metallicity factors also contribute for the observed decrease in the switching voltages of Ge10Se90-xTlx glasses with Tl addition. It is also interesting to note that the composition dependence of switching voltages of Ge10Se90-xTlx glasses exhibit a small Cusp around the composition x = 22. which is understood on the basis of a thermally reversing window in this system in the composition range 22 <= x <= 30. The thickness dependence of switching voltages has been found to provide an insight about the type of switching mechanism involved in these samples. (C) 2009 Elsevier B.V. All rights reserved
Resumo:
Studies on the electrical switching behavior of melt quenched bulk Si15Te85-xSbx glasses have been undertaken in the composition range (1 <= x <= 10), in order to understand the effect of Sb addition on the electrical switching behavior of Si15Te85-x base glass. It has been observed that all the Si15Te85-xSbx glasses studied exhibit a smooth memory type switching. Further, the switching voltages are found to decrease almost linearly with Sb content, which indicates that the metallicity of the dopant plays a dominant role in this system compared to network connectivity/rigidity. The thickness dependence of switching voltage (V-th) indicates a clear thermal origin for the switching mechanism. The temperature variation of switching voltages reveals that the Si15Te85-xSbx glasses studied have a moderate thermal stability. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Bulk As-Te-Tl glasses belonging to the As30Te70-xTlx (4 <= x <= 22) and As40Te60-xTlx (5 <= x <= 20) composition tie lines are studied for their I-V characteristics. Unlike other As-Te-III glasses such as As-Te-Al and As-Te-In, which exhibit threshold behavior, the present samples show memory switching. The composition dependence of switching voltages (V-t) of As-Te-Tl glasses is also different from that of As-Te-Al and As-Te-In glasses, and it is found that V-t decreases with the addition of Tl. Both the type of switching exhibited by As-Te-Tl glasses and the composition dependence of V-t, seems to be intimately connected with the nature of bonding of Tl atoms and the resultant structural network. Furthermore, the temperature and thickness dependence of switching voltages of As-Te-Tl glasses suggest an electro thermal mechanism for switching in these samples.
Resumo:
The behavior of electrical resistivity in the critical region of three polar + nonpolar binary liquid systems CS2 +(CH3CO)2O, C6H12+(CH3CO)2O, and n‐C7H16+(CH3CO)2O is studied. For the mixtures with critical composition, the two phase region shows a conductivity behavior with σ1−σ2∼ (−ϵ)β with β?0.35. In the one phase region dR/dT has a singularity ϵ−b with b?0.35. A possible theory of the impurity conduction is given, which broadly explains these results. The possibility of dR/dT being positive or negative is also discussed.
Resumo:
The electrical switching behavior of amorphous Al23Te77 thin film devices, deposited by flash evaporation, has been studied in co-planar geometry. It is found that these samples exhibit memory type electrical switching. Scanning Electron Microscopic studies show the formation of a crystalline filament in the electrode region which is responsible for switching of the device from high resistance OFF state to low resistance ON state. It is also found that the switching behavior of thin film Al-Te samples is similar to that of bulk samples, with the threshold fields of bulk samples being higher. This has been understood on the basis of higher thermal conductance in bulk, which reduces the Joule heating and temperature rise in the electrode region. (C) 2010 Elsevier B.V. All rights reserved.
Temperature dependent electrical transport behavior of InN/GaN heterostructure based Schottky diodes
Resumo:
InN/GaN heterostructure based Schottky diodes were fabricated by plasma-assisted molecular beam epitaxy. The temperature dependent electrical transport properties were carried out for InN/GaN heterostructure. The barrier height and the ideality factor of the Schottky diodes were found to be temperature dependent. The temperature dependence of the barrier height indicates that the Schottky barrier height is inhomogeneous in nature at the heterostructure interface. The higher value of the ideality factor and its temperature dependence suggest that the current transport is primarily dominated by thermionic field emission (TFE) other than thermionic emission (TE). The room temperature barrier height obtained by using TE and TFE models were 1.08 and 1.43 eV, respectively. (C) 2011 American Institute of Physics. doi: 10.1063/1.3549685]
Resumo:
This work describes the electrical switching behavior of three telluride based amorphous chalcogenide thin film samples, Al-Te, Ge-Se-Te and Ge-Te-Si. These amorphous thin films are made using bulk glassy ingots, prepared by conventional melt quenching technique, using flash evaporation technique; while Al-Te sample has been coated in coplanar electrode geometry, Ge-Se-Te and Ge-Te-Si samples have been deposited with sandwich electrodes. It is observed that all the three samples studied, exhibit memory switching behavior in thin film form, with Ge-Te-Si sample exhibiting a faster switching characteristic. The difference seen in the switching voltages of the three samples studied has been understood on the basis of difference in device geometry and thickness. Scanning electron microscopic image of switched region of a representative Ge15Te81Si4 sample shows a structural change and formation of crystallites in the electrode region, which is responsible for making a conducting channel between the two electrodes during switching.
Resumo:
Bulk Ge(15)Te(85 - x)Sn(x) and Ge(17)Te(83 - x)Sn(x) glasses, are found to exhibit memory type electrical switching. The switching voltages (V(t)) and thermal stability of Ge(15)Te(85 - x)Sn(x) and Ge(17)Te(83 - x)Sn(x) glasses are found to decrease with Sn content. The composition dependence of v, has been understood on the basis of the decrease in the OFF state resistance and thermal stability of these glasses with tin addition. X-ray diffraction studies reveal that no elemental Sn or Sn compounds with Te or Ge are present in thermally crystallized Ge-Te-Sn samples. This indicates that Sn atoms do not interact with the host matrix and form a phase separated network of its own, which remains in the parent glass matrix as an inclusion. Consequently, there is no enhancement of network connectivity and rigidity. The thickness dependence of switching voltages of Ge(15)Te(85 - x)Sn(x) and Ge(17)Te(83 - x)Sn(x) glasses is found to be linear, in agreement with the memory switching behavior shown by these glasses. (C) 2011 Elsevier B.V. All rights reserved.