41 resultados para ESTANCO DEL ALCOHOL
em Indian Institute of Science - Bangalore - Índia
Resumo:
Poly( ethylene oxide), poly(vinyl alcohol): and their blend in a 40 : 60 mole ratio were doped with aluminum isopropoxide. Their structural, thermal, and electrical properties were studied. Aluminum isopropoxide acts as a Lewis acid and thus significantly influences the electrical properties of the polymers and the blend. It also acts as a scavanger for the trace quantities of water p-resent in them, thereby reducing the magnitude of proton transport. It also affects the structure of polymers that manifests in the thermal transformation and decomposition characteristics.
Resumo:
PbS quantum dots capped with mercaptoethanol (C2H5OSH) have been synthesized in poly vinyl alcohol and used to investigate their photoluminescence (PL) response to various ions such as zinc (Zn), cadmium (Cd), mercury (Hg), silver (Ag), copper (Cu), iron (Fe), manganese (Mn), cobalt (Co), chromium (Cr) and nickel (Ni). The enhancement in the PL intensity was observed with specific ions namely Zn, Cd, Hg and Ag. Among these four ions, the PL response to Hg and Ag even at sub-micro-molar concentrations was quite high, compared to that of Zn and Cd. It was observed that the change in Pb and S molar ratio has profound effect on the sensitivity of these ions. These results indicate that the sensitivity of these QDs could be fine-tuned by controlling the S concentration at the surface. Contrary to the above, Cu quenched the photoluminescence. In Cd based QDs related ion probing, Hg and Cu was found to have quenching properties, however, our PbS QDs have quenching property only for Cu ions. This was attributed to the formation HgS at the surface that has bandgap higher than PbS. Another interesting property of PbS in PVA observed is photo-brightening mechanism due to the curing of the polymer with laser. However, the presence of excess ions at the surface changes its property to photo-darkening/brightening that depends on the direction of carrier transfer mechanism (from QDs to the surface adsorbed metal ions or vice-versa). which is an interesting feature for metal ion detectivity.
Resumo:
Uniformity in bias tilt, for the polyvinyl alcohol(PVA)surface layer induced orientation of nematic liquid crystals, could be achieved for large area display panels, if one of the transparent electrodes is first directionally rubbed with fine abrasive; then both the electrodes coated with PVA, followed by directionally buffing the chemisorbed layers in the same direction. Uniformity may be due to increased 'train' configuration of the adsorbed macromolecule by falling on to microgrooves and maintaining the same sense of asymmetry for the looped segments.
Resumo:
We report a multilayer film of poly(vinyl alcohol) (PVA)-borate complex and chitosan by using a layer-by-layer approach. PVA is an uncharged polymer, but hydroxyl functional groups of PVA can be crosslinked by using borax as a cross-linking agent. As a result electrostatic charges and intra- and interchain cross-links are introduced in the PVA chain and provide physically cross-linked networks. The PVA-borate was then deposited on a flat Substrate as well as on colloidal particles with chitosan as an oppositely charged polyelectrolyte. Quartz crystal microbalance. scanning electron microscopy, and atomic force microscopy were used to follow the growth of thin film oil flat substrate. Analogous experiments were performed on melamine formaldehyde colloidal particles (3-3.5 mu m) to quantify the process for the preparation of hollow rnicrocapsules. Removal of the core in 0.1 N HCI results in hollow microcapsules. Characterization of microcapsules by transmission electron microscopy revealed formation of stable microcapsules. Further, self-assembly of PVA-borate/chitosan was loaded with the anticancer drug doxorubicin, and release rates were determined at different pH Values to highlight the drug delivery potential of this system.
Resumo:
Kinetic information on the resinification of furfuryl alcohol has been derived from the rate of increase of color intensity measured with a photoelectric colorimeter, the resinification being carried out isothermally in Clark-Lubs aqueous buffer solutions in the pH range of 1.0-2.2. The activation energy for polymerization is found to increase exponentially with pH. The time required for emulsification (which is quickly followed by separation of resin layer) to occur in an aqueous solution of furfuryl alcohol also increases exponentially with pH, but it decreases exponentially with temperature. This is described quantitatively by a single expression.
Resumo:
2-Phenethyl alcohol (2-PEA) and 2-phenyllactic acid (2-PLA) were isolated from the culture filtrates of Candida species grown in media containing peptone or phenylalanine as nitrogen source. These compounds were characterized by comparing their UV, IR, and NMR spectral properties with authentic samples. Candida species differed markedly in their production of 2-PEA and 2-PLA. Experiments using [14C]-phenylalanine indicated that both 2-PEA and 2-PLA are synthesised from L-phenylalanine. A pathway for the biosynthesis of 2-PEA from L-phenylalanine has been proposed.
Resumo:
A model for heterogeneous acetalisation of poly(vinyl alcohol) with limited solution volume is proposed based on the grain model of Sohn and Szekely. Instead of treating the heterogeneous acetalisation as purely a diffusion process, as in the Matuzawa and Ogasawara model, the present model also takes into account the chemical reaction and the physical state of the solid polymer, such as degree of swelling and porosity, and assumes segregation of the polymer phase at higher conversion into an outer fully reacted zone and an inner zone where the reaction still proceeds. The solution of the model for limited solution volume, moreover, offers a simple method of determining the kinetic parameters and diffusivity for the solid-liquid system using the easily measurable bulk solution concentration of the liquid reactant instead of conversion-distance data for the solid phase, which are considerably more difficult to obtain.
Resumo:
A microorganism of the genus Pseudomonas has been isolated from the soil by enrichment culture techniques with linalool(I) as the sole source of carbon and energy. The organism is also capable of utilizing limonene, citronellol, and geraniol as substrates but fails to grow on citral, critranellal, and 1,8-cineole. Fermentation of linalool by this bacterium in a mineral salt medium results in the formation of 10-hydroxylinalool(II), oleuropeic acid (IX), 2-vinyl-2-methyl-5-hydroxyisopropyl-tetraphydrofuran)linalool oxide, V), 2-vinyl-2-methyl-tetrahydrofuran-5-one(unsaturated lactone, VI), and few unidentified minor metabolities. Probable pathways for the biodegradation of linalool are presented.
Resumo:
Hydrogen bonding in the highly hindered alcohol 2,4-dimethyl-3-ethyl-3-pentanol has been studied by proton n.m.r. and infrared spectroscopy. This alcohol associates to form a dimer but no higher hydrogen bonded species; hence the monomer–dimer equilibrium can be studied without interference from competing processes. Spectral and thermodynamic properties for the hydrogen bonding are reported.
Resumo:
A soil micro-organism identified as Alcaligenes eutrophus capable of utilizing nerolidol, a sesquiterpene alcohol as the sole source of carbon, contains an inducible NAD(P)(+)-linked secondary-alcohol dehydrogenase (SADH), The enzyme was purified 252-fold from crude cell-free extract by a combination of salt precipitation, ion-exchange and affinity-matrix chromatography, Native and SDS/PAGE PAGE of the purified enzyme showed a single protein band and the enzyme appears to be a homotetramer having an apparent molecular mass of 139 kDa comprising four identical subunits of 38.5 kDa, The isoelectric point (pi) of SADH was determined to be 6.2, Depending on pH of the reaction media, the enzyme carried out both oxidation and reductions of various terpenoids and steroids, At pH 5.5, the enzyme catalysed the stereospecific reduction of prochiral ketones to optically active (S)-alcohols and the oxidation reaction was predominated over the former at pH 9.5, NADP(+) and NADPH were respectively preferred over NAD(+) and NADH for oxidation and reduction reactions, The K-m values for testosterone, NADP(+) and NAD(+) were 11.8, 55.6, and 122 mu M respectively, Neither enzyme was significantly inhibited by metal-binding agents, but some thiol-blocking compounds inhibited it, SADH tolerates moderate concentrations of water-miscible organic solvents such as ethanol, methanol, acetone and dioxan, Some of the properties of this enzyme were found to be significantly different from those thus far described.
Resumo:
Alcaligenes eutrophus utilizing nerolidol, a sesquiterpene alcohol,as the sole source of carbon contains an inducible NAD(P)+-linked secondary alcohol dehydrogenase (SADH). The enzyme was purified to homogeneity by a combination of salt precipitation, ion exchange and affinity matri chromatographies. The apparent molecular mass of the enzyme was estimated to be 139 KDa with four identical subunits of 38.5 KDa. The enzyme carried out both oxidation and reduction reactions. At pH 5.5, enzyme catalyzed the stereospecific reduction of prochiral ketones to secondary alcohols. The pH optimum for the oxidation reaction was 9.5. NADP+ and NADPH were respectively preferred over NAD+ and NADH for oxidation and reduction reactions. Some of the properties of this enzyme were found to be significantly different from those thus far described.
Resumo:
A direct borohydride fuel cell (DBFC) employing a poly (vinyl alcohol)hydrogel membrane electrolyte (PHME) is reported. The DBFC employs an AB(5) Misch metal alloy as anode and a goldplated stainless steel mesh as cathode in conjunction with aqueous alkaline solution of sodium borohydride as fuel and aqueous acidified solution of hydrogen peroxide as oxidant. Room temperature performances of the PHME-based DBFC in respect of peak power outputs; ex-situ cross-over of oxidant, fuel,anolyte and catholyte across the membrane electrolytes; utilization efficiencies of fuel and oxidant, as also cell performance durability are compared with a similar DBFC employing a NafionA (R)-117 membrane electrolyte (NME). Peak power densities of similar to 30 and similar to 40 mW cm(-2) are observed for the DBFCs with PHME and NME, respectively. The crossover of NaBH4 across both the membranes has been found to be very low. The utilization efficiencies of NaBH4 and H2O2 are found to be similar to 24 and similar to 59%, respectively for the PHME-based DBFC; similar to 18 and similar to 62%, respectively for the NME-based DBFC. The PHME and NME-based DBFCs exhibit operational cell potentials of similar to 1 center dot 2 and similar to 1 center dot 4 V, respectively at a load current density of 10 mA cm(-2) for similar to 100 h.
Resumo:
The esterification of propionic acid was investigated using three different alcohols, namely, isopropyl alcohol, isobutyl alcohol, and isoamyl alcohol. The variation of conversion with time for the synthesis of isoamyl propionate was investigated in the presence of five enzymes. Novozym 435 showed the highest activity, and this was used as the enzyme for investigating the various parameters that influence the esterification reaction. The Ping-Pong Bi-Bi model with inhibition by both acid and alcohol was used to model the experimental data and determine the kinetics of the esterification reaction.