17 resultados para Discrimination in housing
em Indian Institute of Science - Bangalore - Índia
Resumo:
Triplet lifetimes have been determined for the diastereomers of a broad set of butane-l,4-dione derivatives (1-3). A remarkable dependence of lifetimes on conformational preferences is revealed in that the lifetimes are shorter for the meso diastereomers of 1-3 than those for the racemic ones. The intramolecular beta-phenyl quenching is promoted in the case of meso diastereomers by virtue of the gauche relationship between the excited carbonyl group and the beta-aryl ring, while a distal arrangement in the lowest energy conformation (H-anti) in racemic diastereomers prevents such a deactivation. The involvement of charge transfer in the intramolecular beta-phenyl quenching is suggested by the correlation of the triplet lifetimes of the meso diastereomers of compounds 2 with the nature of the substituent on the beta-phenyl rings. In the case of racemic diastereomers, beta-methoxy substitution on the beta-phenyl ring (2-OCH3, 3-OCH3) also led to a decrease of the triplet lifetimes when compared to those of the nonsubstituted compounds (2-H, 3-H). This shortening is accounted for by the deactivation of a small proportion of the excited molecules through beta-phenyl quenching. In addition to the above factors, the lifetimes in the case of meso diastereomers can further be controlled by increasing the energy spacing between the T-1 and T-2 states, since beta-phenyl quenching occurs from the latter for compounds 2 and 3. Through a rational conformational control, a surprisingly long triplet lifetime (300 ns) has been measured for the first time for a purely n,pi* triplet-excited beta-phenylpropiophenone dimer (1-rac).
Resumo:
A theoretical study has been carried out at the B3LYP/LANL2DZ level to compare the reactivity of phenyl isocyanate and phenyl isothiocyanate towards titanium(IV) alkoxides. Isocyanates are shown to favour both mono insertion and double insertion reactions. Double insertion in a head-to-tail fashion is shown to be more exothermic than double insertion in a head-to-head fashion. The head-to-head double insertion leads to the metathesis product, a carbodiimide, after the extrusion of carbon dioxide. In the case of phenyl isothiocyanate, calculations favour the formation of only mono insertion products. Formation of a double insertion product is highly unfavourable. Further, these studies indicate that the reverse reaction involving the metathesis of N,N-'-diphenyl carbodiimide with carbon dioxide is likely to proceed more efficiently than the metathesis reaction with carbon disulphide. This is in excellent agreement with experimental results as metathesis with carbon disulphide fails to occur. In a second study, multilayer MM/QM calculations are carried out on intermediates generated from reduction of titanium(IV) alkoxides to investigate the effect of alkoxy bridging on the reactivity of multinuclear Ti species. Bimolecular coupling of imines initiated by Ti(III) species leads to a mixture of diastereomers and not diastereoselective coupling of the imine. However if the reaction is carried out by a trimeric biradical species, diastereoselective coupling of the imine is predicted. The presence of alkoxy bridges greatly favours the formation of the d,l (+/-) isomer, whereas the intermediate without alkoxy bridges favours the more stable meso isomer. As a bridged trimeric species, stabilized by bridging alkoxy groups, correctly explains the diastereoselective reaction, it is the most likely intermediate in the reaction.
Resumo:
Nestmate discrimination plays an important role in preserving the integrity of social insect colonies. It is known to occur in the primitively eusocial wasp Ropalidia marginata in which non-nestmate conspecifics are not allowed to come near a nest. However, newly eclosed females are accepted in foreign colonies, suggesting that such individuals may not express the cues that permit differentiation between nestmates and non-nestmates. As cuticular hydrocarbons (CHCs) have been implicated as chemosensory cues used in nestmate recognition in other species, we investigated, using bioassays and chemical analyses, whether CHCs can play a role in nestmate recognition in R. marginata. We found that individuals can be differentiated according to colony membership using their CHC profiles, suggesting a role of CHCs in nestmate discrimination. Non-nestmate CHCs of adult females received more aggression than nestmate CHCs, thereby showing that CHCs are used as cues for nestmate recognition. Contrarily, and as expected, CHCs of newly eclosed females were not discriminated against when presented to a foreign colony. Behavioural sequence analysis revealed the behavioural mechanism involved in sensing nestmate recognition cues. We also found that newly eclosed females had a different CHC profile from that of adult females, thereby providing an explanation for why young females are accepted in foreign colonies. (C) 2013 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
We report on the design, development, and performance study of a packaged piezoelectric thin film impact sensor, and its potential application in non-destructive material discrimination. The impact sensing element employed was a thin circular diaphragm of flexible Phynox alloy. Piezoelectric ZnO thin film as an impact sensing layer was deposited on to the Phynox alloy diaphragm by RF reactive magnetron sputtering. Deposited ZnO thin film was characterized by X-ray diffraction (XRD), Atomic Force Microscopy (AFM), and Scanning Electron Microscopy (SEM) techniques. The d(31) piezoelectric coefficient value of ZnO thin film was 4.7 pm V-1, as measured by 4-point bending method. ZnO film deposited diaphragm based sensing element was properly packaged in a suitable housing made of High Density Polyethylene (HDPE) material. Packaged impact sensor was used in an experimental set-up, which was designed and developed in-house for non-destructive material discrimination studies. Materials of different densities (iron, glass, wood, and plastic) were used as test specimens for material discrimination studies. The analysis of output voltage waveforms obtained reveals lots of valuable information about the impacted material. Impact sensor was able to discriminate the test materials on the basis of the difference in their densities. The output response of packaged impact sensor shows high linearity and repeatability. The packaged impact sensor discussed in this paper is highly sensitive, reliable, and cost-effective.
Resumo:
We show that in studies of light quark- and gluon-initiated jet discrimination, it is important to include the information on softer reconstructed jets (associated jets) around a primary hard jet. This is particularly relevant while adopting a small radius parameter for reconstructing hadronic jets. The probability of having an associated jet as a function of the primary jet transverse momentum (PT) and radius, the minimum associated jet pi, and the association radius is computed up to next-to-double logarithmic accuracy (NDLA), and the predictions are compared with results from Herwig++, Pythia6 and Pythia8 Monte Carlos (MC). We demonstrate the improvement in quark-gluon discrimination on using the associated jet rate variable with the help of a multivariate analysis. The associated jet rates are found to be only mildly sensitive to the choice of parton shower and hadronization algorithms, as well as to the effects of initial state radiation and underlying event. In addition, the number of k(t) subjets of an anti-k(t) jet is found to be an observable that leads to a rather uniform prediction across different MC's, broadly being in agreement with predictions in NDLA, as compared to the often used number of charged tracks observable.
Resumo:
Discrimination of Bell states plays an important role in a number of quantum computational protocols such as teleportation and secret sharing. However, most of the protocols dealing with Bell state discrimination in the literature either involve performing correlated measurements or destroying the entanglement of the system. Here, we demonstrate an NMR-based experimental realization of a protocol for Bell state discrimination, following a scheme proposed by Gupta et al (quant-ph/0504183v1, 23 April 2005), which does not destroy the Bell state under consideration. Using the proposed protocol, one can deterministically distinguish the Bell states, without performing a measurement using the entangled basis. State discrimination is performed through two independent measurements on one ancilla qubit, which leaves the Bell states unchanged.
Resumo:
The H-1 NMR spectroscopic discrimination of enantiomers in the solution state and the measurement of enantiomeric composition is most often hindered due to either very small chemical shift differences between the discriminated peaks or severe overlap of transitions from other chemically non-equivalent protons. In addition the use of chiral auxiliaries such as, crown ether and chiral lanthanide shift reagent may often cause enormous line broadening or give little degree of discrimination beyond the crown ether substrate ratio, hampering the discrimination. In circumventing such problems we are proposing the utilization of the difference in the additive values of all the chemical shifts of a scalar coupled spin system. The excitation and detection of appropriate highest quantum coherence yields the measurable difference in the frequencies between two transitions, one pertaining to each enantiomer in the maximum quantum dimension permitting their discrimination and the F-2 cross section at each of these frequencies yields an enantiopure spectrum. The advantage of the utility of the proposed method is demonstrated on several chiral compounds where the conventional one dimensional H-1 NMR spectra fail to differentiate the enantiomers.
Resumo:
The study demonstrates the utility of ternary ion-pair complex formed among BINOL (1,1'-Bi-2-naphthol), a carboxylic acid and an organic base, such as, dimethylpyridine (DMAP), 1,4-diazabicyclo2.2.2]octane (DABCO), as a versatile chiral solvating agent (CSA) for the enantiodiscrimination of carboxylic acids, measurement of enantiomeric excess (ee) and the assignment of absolute configuration of hydroxy acids. The proposed mechanism of ternary complex has wider application for testing the enantiopurity owing to the fact that the binary mixture using BINOL alone does not serve as a solvating agent for their discrimination. In addition, the developed protocol has an excellent utility for the assignment of the absolute configurations of hydroxy acids.
Resumo:
Three new triarylborane conjugated dicyanovinyl chromophores (Mes(2)B-pi-donor-DCV); donor: N-methyldiphenylamine (1) and triphenylamine (2 and 3 with two BMes(2) substitutions]) of type A-D-A (acceptor-donor- acceptor) are reported. Compounds 1-3 exhibit intense charge transfer (CT) absorption bands in the visible region. These absorption peaks are combination CT bands of the amine donor to both the BMes(2) and DCV units. This inference was supported by theoretical studies. Compound 1 shows weak fluorescence compared to 2 and 3. The discrimination of fluoride and cyanide ions is essential in the case of triarylborane (TAB) based anion sensors as a similar response is given towards both the anions. Anion binding studies of 1, 2 and 3 showed that fluoride ions bind selectively to the boron centre and block the corresponding CT transition (donor to BMes(2)) leaving the other CT transition to be red shifted. On the other hand, cyanide ions bind with both the receptor sites and stop both the CT transition processes and hence a different colorimetric response was noted. The binding of F-/CN- induces colour changes in the visible region of the electronic spectra of 2 and 3, which allows for the naked-eye detection of F- and CN- ions. The anion binding mechanisms are established using NMR titration experiments.
Resumo:
Racemic gossypol has been resolved by HPLC separation of diastereomeric (−) norepinephrine adducts on a reverse-phase column. The binding constants for the interaction of the three gossypol forms (+, − and −) with human and bovine serum albumins have been determined by fluoresence quenching studies. The KD values demonstrate that all three forms bind equally effectively to the two proteins, suggesting an absence of chiral discrimination in albumin-gossypol interactions. Circular dichroism studies of (+)-gossypol binding to the model dibasic peptides, Boc-Lys-Pro-Aib-Lys-NHMe and gramicidin S, suggesting that distortions of binaphthyl geometry may occur only for specific orientations of interacting residues at the receptor site.
Resumo:
The effectiveness of linear matched filters for improved character discrimination in presence of random noise and poorly defined characters has been investigated. We have found that although the performance of the filter in presence of random noise is reasonably good (16 dB gain in signal-to-noise-ratio) its performance is poor when the unknown character is distorted (linear shift and rotation).
Resumo:
The effectiveness of linear matched filters for improved character discrimination in presence of random noise and poorly defined characters has been investigated. We have found that although the performance of the filter in presence of random noise is reasonably good (16 dB gain in signal-to-noise-ratio) its performance is poor when the unknown character is distorted (linear shift and rotation).
Resumo:
The mismatch repair (MMR) pathway serves to maintain the integrity of the genome by removing mispaired bases from the newly synthesized strand. In E. coli, MutS, MutL and MutH coordinate to discriminate the daughter strand through a mechanism involving lack of methylation on the new strand. This facilitates the creation of a nick by MutH in the daughter strand to initiate mismatch repair. Many bacteria and eukaryotes, including humans, do not possess a homolog of MutH. Although the exact strategy for strand discrimination in these organisms is yet to be ascertained, the required nicking endonuclease activity is resident in the C-terminal domain of MutL. This activity is dependent on the integrity of a conserved metal binding motif. Unlike their eukaryotic counterparts, MutL in bacteria like Neisseria exist in the form of a homodimer. Even though this homodimer would possess two active sites, it still acts a nicking endonuclease. Here, we present the crystal structure of the C-terminal domain (CTD) of the MutL homolog of Neisseria gonorrhoeae (NgoL) determined to a resolution of 2.4 A. The structure shows that the metal binding motif exists in a helical configuration and that four of the six conserved motifs in the MutL family, including the metal binding site, localize together to form a composite active site. NgoL-CTD exists in the form of an elongated inverted homodimer stabilized by a hydrophobic interface rich in leucines. The inverted arrangement places the two composite active sites in each subunit on opposite lateral sides of the homodimer. Such an arrangement raises the possibility that one of the active sites is occluded due to interaction of NgoL with other protein factors involved in MMR. The presentation of only one active site to substrate DNA will ensure that nicking of only one strand occurs to prevent inadvertent and deleterious double stranded cleavage.