54 resultados para Data compression (Computer science)
em Indian Institute of Science - Bangalore - Índia
Resumo:
Data flow computers are high-speed machines in which an instruction is executed as soon as all its operands are available. This paper describes the EXtended MANchester (EXMAN) data flow computer which incorporates three major extensions to the basic Manchester machine. As extensions we provide a multiple matching units scheme, an efficient, implementation of array data structure, and a facility to concurrently execute reentrant routines. A simulator for the EXMAN computer has been coded in the discrete event simulation language, SIMULA 67, on the DEC 1090 system. Performance analysis studies have been conducted on the simulated EXMAN computer to study the effectiveness of the proposed extensions. The performance experiments have been carried out using three sample problems: matrix multiplication, Bresenham's line drawing algorithm, and the polygon scan-conversion algorithm.
Resumo:
The EEG time series has been subjected to various formalisms of analysis to extract meaningful information regarding the underlying neural events. In this paper the linear prediction (LP) method has been used for analysis and presentation of spectral array data for the better visualisation of background EEG activity. It has also been used for signal generation, efficient data storage and transmission of EEG. The LP method is compared with the standard Fourier method of compressed spectral array (CSA) of the multichannel EEG data. The autocorrelation autoregressive (AR) technique is used for obtaining the LP coefficients with a model order of 15. While the Fourier method reduces the data only by half, the LP method just requires the storage of signal variance and LP coefficients. The signal generated using white Gaussian noise as the input to the LP filter has a high correlation coefficient of 0.97 with that of original signal, thus making LP as a useful tool for storage and transmission of EEG. The biological significance of Fourier method and the LP method in respect to the microstructure of neuronal events in the generation of EEG is discussed.
Resumo:
Indian logic has a long history. It somewhat covers the domains of two of the six schools (darsanas) of Indian philosophy, namely, Nyaya and Vaisesika. The generally accepted definition of Indian logic over the ages is the science which ascertains valid knowledge either by means of six senses or by means of the five members of the syllogism. In other words, perception and inference constitute the subject matter of logic. The science of logic evolved in India through three ages: the ancient, the medieval and the modern, spanning almost thirty centuries. Advances in Computer Science, in particular, in Artificial Intelligence have got researchers in these areas interested in the basic problems of language, logic and cognition in the past three decades. In the 1980s, Artificial Intelligence has evolved into knowledge-based and intelligent system design, and the knowledge base and inference engine have become standard subsystems of an intelligent system. One of the important issues in the design of such systems is knowledge acquisition from humans who are experts in a branch of learning (such as medicine or law) and transferring that knowledge to a computing system. The second important issue in such systems is the validation of the knowledge base of the system i.e. ensuring that the knowledge is complete and consistent. It is in this context that comparative study of Indian logic with recent theories of logic, language and knowledge engineering will help the computer scientist understand the deeper implications of the terms and concepts he is currently using and attempting to develop.
Resumo:
Low power consumption per channel and data rate minimization are two key challenges which need to be addressed in future generations of neural recording systems (NRS). Power consumption can be reduced by avoiding unnecessary processing whereas data rate is greatly decreased by sending spike time-stamps along with spike features as opposed to raw digitized data. Dynamic range in NRS can vary with time due to change in electrode-neuron distance or background noise, which demands adaptability. An analog-to-digital converter (ADC) is one of the most important blocks in a NRS. This paper presents an 8-bit SAR ADC in 0.13-mu m CMOS technology along with input and reference buffer. A novel energy efficient digital-to-analog converter switching scheme is proposed, which consumes 37% less energy than the present state-of-the-art. The use of a ping-pong input sampling scheme is emphasized for multichannel input to alleviate the bandwidth requirement of the input buffer. To reduce the data rate, the A/D process is only enabled through the in-built background noise rejection logic to ensure that the noise is not processed. The ADC resolution can be adjusted from 8 to 1 bit in 1-bit step based on the input dynamic range. The ADC consumes 8.8 mu W from 1 V supply at 1 MS/s speed. It achieves effective number of bits of 7.7 bits and FoM of 42.3 fJ/conversion-step.
Resumo:
Classification of large datasets is a challenging task in Data Mining. In the current work, we propose a novel method that compresses the data and classifies the test data directly in its compressed form. The work forms a hybrid learning approach integrating the activities of data abstraction, frequent item generation, compression, classification and use of rough sets.
Resumo:
Classification of large datasets is a challenging task in Data Mining. In the current work, we propose a novel method that compresses the data and classifies the test data directly in its compressed form. The work forms a hybrid learning approach integrating the activities of data abstraction, frequent item generation, compression, classification and use of rough sets.
Resumo:
The amount of data contained in electroencephalogram (EEG) recordings is quite massive and this places constraints on bandwidth and storage. The requirement of online transmission of data needs a scheme that allows higher performance with lower computation. Single channel algorithms, when applied on multichannel EEG data fail to meet this requirement. While there have been many methods proposed for multichannel ECG compression, not much work appears to have been done in the area of multichannel EEG. compression. In this paper, we present an EEG compression algorithm based on a multichannel model, which gives higher performance compared to other algorithms. Simulations have been performed on both normal and pathological EEG data and it is observed that a high compression ratio with very large SNR is obtained in both cases. The reconstructed signals are found to match the original signals very closely, thus confirming that diagnostic information is being preserved during transmission.
Resumo:
We propose a scheme for the compression of tree structured intermediate code consisting of a sequence of trees specified by a regular tree grammar. The scheme is based on arithmetic coding, and the model that works in conjunction with the coder is automatically generated from the syntactical specification of the tree language. Experiments on data sets consisting of intermediate code trees yield compression ratios ranging from 2.5 to 8, for file sizes ranging from 167 bytes to 1 megabyte.
Resumo:
We propose the design and implementation of hardware architecture for spatial prediction based image compression scheme, which consists of prediction phase and quantization phase. In prediction phase, the hierarchical tree structure obtained from the test image is used to predict every central pixel of an image by its four neighboring pixels. The prediction scheme generates an error image, to which the wavelet/sub-band coding algorithm can be applied to obtain efficient compression. The software model is tested for its performance in terms of entropy, standard deviation. The memory and silicon area constraints play a vital role in the realization of the hardware for hand-held devices. The hardware architecture is constructed for the proposed scheme, which involves the aspects of parallelism in instructions and data. The processor consists of pipelined functional units to obtain the maximum throughput and higher speed of operation. The hardware model is analyzed for performance in terms throughput, speed and power. The results of hardware model indicate that the proposed architecture is suitable for power constrained implementations with higher data rate
Resumo:
This paper presents a novel algorithm for compression of single lead Electrocardiogram (ECG) signals. The method is based on Pole-Zero modelling of the Discrete Cosine Transformed (DCT) signal. An extension is proposed to the well known Steiglitz-Hcbride algorithm, to model the higher frequency components of the input signal more accurately. This is achieved by weighting the error function minimized by the algorithm to estimate the model parameters. The data compression achieved by the parametric model is further enhanced by Differential Pulse Code Modulation (DPCM) of the model parameters. The method accomplishes a compression ratio in the range of 1:20 to 1:40, which far exceeds those achieved by most of the current methods.
Resumo:
Summary form only given. A scheme for code compression that has a fast decompression algorithm, which can be implemented using simple hardware, is proposed. The effectiveness of the scheme on the TMS320C62x architecture that includes the overheads of a line address table (LAT) is evaluated and obtained compression rates ranging from 70% to 80%. Two schemes for decompression are proposed. The basic idea underlying the scheme is a simple clustering algorithm that partially maps a block of instructions into a set of clusters. The clustering algorithm is a greedy algorithm based on the frequency of occurrence of various instructions.