362 resultados para DYNAMICAL BEHAVIOR

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several surfactant molecules self-assemble in solution to form long, flexible wormlike micelles which get entangled with each other, leading to viscoelastic gel phases. We discuss our recent work on the rheology of such a gel formed in the dilute aqueous solutions of a surfactant CTAT. In the linear rheology regime, the storage modulus G′(ω) and loss modulus G″(ω) have been measured over a wide frequency range. In the nonlinear regime, the shear stress σ shows a plateau as a function of the shear rate math above a certain cutoff shear rate mathc. Under controlled shear rate conditions in the plateau regime, the shear stress and the first normal stress difference show oscillatory time-dependence. The analysis of the measured time series of shear stress and normal stress has been done using several methods incorporating state space reconstruction by embedding of time delay vectors. The analysis shows the existence of a finite correlation dimension and a positive Lyapunov exponent, unambiguously implying that the dynamics of the observed mechanical instability can be described by that of a dynamical system with a strange attractor of dimension varying from 2.4 to 2.9.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dynamics of solvation of newly created charged species in dense dipolar liquids can proceed at a high speed with time constants often in the subpicosecond domain. The motion of the solvent molecules can be in the inertial limit at such short times. In this paper we present a microscopic study of the effects of inertial motion of solvent molecules on the solvation dynamics of a newly created ion in a model dipolar liquid. Interesting dynamical behavior emerges when the relative contribution of the translational modes in the wave-vector-dependent longitudinal relaxation time is significant. Especially, the theory predicts that the time correlation function of the solvation energy can become oscillatory in some limiting situations. In general, the dynamics becomes faster in the presence of the inertial contribution. We discuss the experimental situations where the inertial effects can be noticeable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Molecular Dynamics (MD) simulations provide an atomic level account of the molecular motions and have proven to be immensely useful in the investigation of the dynamical structure of proteins. Once an MD trajectory is obtained, specific interactions at the molecular level can be directly studied by setting up appropriate combinations of distance and angle monitors. However, if a study of the dynamical behavior of secondary structures in proteins becomes important, this approach can become unwieldy. We present herein a method to study the dynamical stability of secondary structures in proteins, based on a relatively simple analysis of backbone hydrogen bonds. The method was developed for studying the thermal unfolding of beta-lactamases, but can be extended to other systems and adapted to study relevant properties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In addition to the biologically active monomer of the protein insulin circulating in human blood, the molecule also exists in dimeric and hexameric forms that are used as storage. The insulin monomer contains two distinct surfaces, namely, the dimer forming surface (DFS) and the hexamer forming surface (HFS), that are specifically designed to facilitate the formation of the dimer and the hexamer, respectively. In order to characterize the structural and dynamical behavior of interfacial water molecules near these two surfaces (DFS and HFS), we performed atomistic molecular dynamics simulations of insulin with explicit water. Dynamical characterization reveals that the structural relaxation of the hydrogen bonds formed between the residues of DFS and the interfacial water molecules is faster than those formed between water and that of the HFS. Furthermore, the residence times of water molecules in the protein hydration layer for both the DFS and HFS are found to be significantly higher than those for some of the other proteins studied so far, such as HP-36 and lysozyme. In particular, we find that more structured water molecules, with higher residence times (similar to 300-500 ps), are present near HFS than those near DFS. A significant slowing down is observed in the decay of associated rotational auto time correlation functions of O-H bond vector of water in the vicinity of HFS. The surface topography and the arrangement of amino acid residues work together to organize the water molecules in the hydration layer in order to provide them with a preferred orientation. HFS having a large polar solvent accessible surface area and a convex extensive nonpolar region, drives the surrounding water molecules to acquire predominantly an outward H-atoms directed, clathrate-like structure. In contrast, near the DFS, the surrounding water molecules acquire an inward H-atoms directed orientation owing to the flat curvature of hydrophobic surface and the interrupted hydrophilic residual alignment. We have followed escape trajectory of several such quasi-bound water molecules from both the surfaces that reveal the significant differences between the two hydration layers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A self-consistent mode coupling theory (MCT) with microscopic inputs of equilibrium pair correlation functions is developed to analyze electrolyte dynamics. We apply the theory to calculate concentration dependence of (i) time dependent ion diffusion, (ii) intermediate scattering function of the constituent ions, and (iii) ion solvation dynamics in electrolyte solution. Brownian dynamics with implicit water molecules and molecular dynamics method with explicit water are used to check the theoretical predictions. The time dependence of ionic self-diffusion coefficient and the corresponding intermediate scattering function evaluated from our MCT approach show quantitative agreement with early experimental and present Brownian dynamic simulation results. With increasing concentration, the dispersion of electrolyte friction is found to occur at increasingly higher frequency, due to the faster relaxation of the ion atmosphere. The wave number dependence of intermediate scattering function, F(k, t), exhibits markedly different relaxation dynamics at different length scales. At small wave numbers, we find the emergence of a step-like relaxation, indicating the presence of both fast and slow time scales in the system. Such behavior allows an intriguing analogy with temperature dependent relaxation dynamics of supercooled liquids. We find that solvation dynamics of a tagged ion exhibits a power law decay at long times-the decay can also be fitted to a stretched exponential form. The emergence of the power law in solvation dynamics has been tested by carrying out long Brownian dynamics simulations with varying ionic concentrations. The solvation time correlation and ion-ion intermediate scattering function indeed exhibit highly interesting, non-trivial dynamical behavior at intermediate to longer times that require further experimental and theoretical studies. (c) 2015 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present results from numerical simulations using a ‘‘cell-dynamical system’’ to obtain solutions to the time-dependent Ginzburg-Landau equation for a scalar, two-dimensional (2D), (Φ2)2 model in the presence of a sinusoidal external magnetic field. Our results confirm a recent scaling law proposed by Rao, Krishnamurthy, and Pandit [Phys. Rev. B 42, 856 (1990)], and are also in excellent agreement with recent Monte Carlo simulations of hysteretic behavior of 2D Ising spins by Lo and Pelcovits [Phys. Rev. A 42, 7471 (1990)].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of estimating the time-dependent statistical characteristics of a random dynamical system is studied under two different settings. In the first, the system dynamics is governed by a differential equation parameterized by a random parameter, while in the second, this is governed by a differential equation with an underlying parameter sequence characterized by a continuous time Markov chain. We propose, for the first time in the literature, stochastic approximation algorithms for estimating various time-dependent process characteristics of the system. In particular, we provide efficient estimators for quantities such as the mean, variance and distribution of the process at any given time as well as the joint distribution and the autocorrelation coefficient at different times. A novel aspect of our approach is that we assume that information on the parameter model (i.e., its distribution in the first case and transition probabilities of the Markov chain in the second) is not available in either case. This is unlike most other work in the literature that assumes availability of such information. Also, most of the prior work in the literature is geared towards analyzing the steady-state system behavior of the random dynamical system while our focus is on analyzing the time-dependent statistical characteristics which are in general difficult to obtain. We prove the almost sure convergence of our stochastic approximation scheme in each case to the true value of the quantity being estimated. We provide a general class of strongly consistent estimators for the aforementioned statistical quantities with regular sample average estimators being a specific instance of these. We also present an application of the proposed scheme on a widely used model in population biology. Numerical experiments in this framework show that the time-dependent process characteristics as obtained using our algorithm in each case exhibit excellent agreement with exact results. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The singularity structure of the solutions of a general third-order system, with polynomial right-hand sides of degree less than or equal to two, is studied about a movable singular point, An algorithm for transforming the given third-order system to a third-order Briot-Bouquet system is presented, The dominant behavior of a solution of the given system near a movable singularity is used to construct a transformation that changes the given system directly to a third-order Briot-Bouquet system. The results of Horn for the third-order Briot-Bouquet system are exploited to give the complete form of the series solutions of the given third-order system; convergence of these series in a deleted neighborhood of the singularity is ensured, This algorithm is used to study the singularity structure of the solutions of the Lorenz system, the Rikitake system, the three-wave interaction problem, the Rabinovich system, the Lotka-Volterra system, and the May-Leonard system for different sets of parameter values. The proposed approach goes far beyond the ARS algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the motion of a ferromagnetic helical nanostructure under the action of a rotating magnetic field. A variety of dynamical configurations were observed that depended strongly on the direction of magnetization and the geometrical parameters, which were also confirmed by a theoretical model, based on the dynamics of a rigid body under Stokes flow. Although motion at low Reynolds numbers is typically deterministic, under certain experimental conditions the nanostructures showed a surprising bistable behavior, such that the dynamics switched randomly between two configurations, possibly induced by thermal fluctuations. The experimental observations and the theoretical results presented in this paper are general enough to be applicable to any system of ellipsoidal symmetry under external force or torque.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate in a simple model the surprising result that turning on an on-site Coulomb interaction U in a doped band insulator leads to the formation of a half-metallic state. In the undoped system, we show that increasing U leads to a first order transition at a finite value U-AF between a paramagnetic band insulator and an antiferomagnetic Mott insulator. Upon doping, the system exhibits half-metallic ferrimagnetism over a wide range of doping and interaction strengths on either side of U-AF. Our results, based on dynamical mean field theory, suggest a new route to half metallicity, and will hopefully motivate searches for new materials for spintronics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using an iterative sequence of Wittig olefination, reduction, oxidation, and condensation of an active methylene group to carbonyl, it was possible to prepare a series of organometallic push-pull molecules [(CO)(5)M=C(OCH3)(-CH=CH-)(n)(C5H4)Fe(C5H5), M = W, Cr, n = 1-4] in which ferrocene is the donor element and a Fisher carbene moeity is the acceptor group. The molecular first hyperpolarizability beta was determined by hyper-Rayleigh scattering experiments. The beta values ranged from 110 x 10(-30) to 2420 x 10(-30) esu in acetonitrile, and they are among the highest reported for organometallic molecules so far. Electrochemical measurements are consistent with the push-pull nature of these compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The near-critical behavior of the susceptibility deduced from light-scattering measurements in a ternary liquid mixture of 3-methylpyridine, water, and sodium bromide has been determined. The measurements have been performed in the one-phase region near the lower consolute points of samples with different concentrations of sodium bromide. A crossover from Ising asymptotic behavior to mean-field behavior has been observed. As the concentration of sodium bromide increases, the crossover becomes more pronounced, and the crossover temperature shifts closer to the critical temperature. The data are well described by a model that contains two independent crossover parameters. The crossover of the susceptibility critical exponent γ from its Ising value γ=1.24 to the mean-field value γ=1 is sharp and nonmonotonic. We conclude that there exists an additional length scale in the system due to the presence of the electrolyte which competes with the correlation length of the concentration fluctuations. An analogy with crossover phenomena in polymer solutions and a possible connection with multicritical phenomena is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we find through computer simulations and theoretical analysis that the low temperature thermodynamic anomalies of liquid water arises from the intermittent fluctuation between its high density and low density forms, consisting largely of 5-coordinated and 4-coordinated water molecules, respectively. The fluctuations exhibit strong dynamic heterogeneity (defined by the four point time correlation function), accompanied by a divergence like growth of the dynamic correlation length, of the type encountered in fragile supercooled liquids. The intermittency has been explained by invoking a two state model often employed to understand stochastic resonance, with the relevant periodic perturbation provided here by the fluctuation of the total volume of the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal properties and electrical-switching behavior of semiconducting chalcogenide SbxSe55-xTe45 (2 <= x <= 9) glasses have been investigated by alternating differential scanning calorimetry and electrical-switching experiments, respectively. The addition of Sb is found to enhance the glass forming tendency and stability as revealed by the decrease in non-reversing enthalpy Delta H-nr. and an increase in the glass-transition width Delta T-g. Further, the glass-transition temperature of SbxSe55-xTe45 glasses, which is a measure of network connectivity, exhibits a subtle increase, suggesting a meager network growth with the addition of Sb. The crystallization temperature is also observed to increase with Sb content. The SbxSe55-xTe45 glasses (2 <= x <= 9) are found to exhibit memory type of electrical switching, which can be attributed to the polymeric nature of network and high devitrifying ability. The metallicity factor has been found to dominate over the network connectivity and rigidity in the compositional dependence of switching voltage. which shows a profound decrease with the addition of Sb.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Manganitelike double perovskite Sr2TiMnO6 (STMO) ceramics fabricated from the powders synthesized via the solid-state reaction route, exhibited dielectric constants as high as similar to 10(5) in the low frequency range (100 Hz-10 kHz) at room temperature. The Maxwell-Wagner type of relaxation mechanism was found to be more appropriate to rationalize such high dielectric constant values akin to that observed in materials such as KxTiyNi(1-x-y)O and CaCu3Ti4O12. The dielectric measurements carried out on the samples with different thicknesses and electrode materials reflected the influence of extrinsic effects. The impedance studies (100 Hz-10 MHz) in the 180-300 K temperature range revealed the presence of two dielectric relaxations corresponding to the grain boundary and the electrode. The dielectric response of the grain boundary was found to be weakly dependent on the dc bias field (up to 11 V/cm). However, owing to the electrode polarization, the applied ac/dc field had significant effect on the low frequency dielectric response. At low temperatures (100-180 K), the dc conductivity of STMO followed a variable range hopping behavior. Above 180 K, it followed the Arrhenius behavior because of the thermally activated conduction process. The bulk conductivity relaxation owing to the localized hopping of charge carriers obeyed the typical universal dielectric response.