987 resultados para DIRECT ELECTRICAL COMMUNICATION

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, using self-consistent tight-binding calculations. for the first time, we show that a direct to indirect band gap transition is possible in an armchair graphene nanoribbon by the application of an external bias along the width of the ribbon, opening up the possibility of new device applications. With the help of the Dirac equation, we qualitatively explain this band gap transition using the asymmetry in the spatial distribution of the perturbation potential produced inside the nanoribbon by the external bias. This is followed by the verification of the band gap trends with a numerical technique using Magnus expansion of matrix exponentials. Finally, we show that the carrier effective masses possess tunable sharp characters in the vicinity of the band gap transition points.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We extend the recently proposed spectral integration based psychoacoustic model for sinusoidal distortions to the MDCT domain. The estimated masking threshold additionally depends on the sub-band spectral flatness measure of the signal which accounts for the non- sinusoidal distortion introduced by masking. The expressions for masking threshold are derived and the validity of the proposed model is established through perceptual transparency test of audio clips. Test results indicate that we do achieve transparent quality reconstruction with the new model. Performance of the model is compared with MPEG psychoacoustic models with respect to the estimated perceptual entropy (PE). The results show that the proposed model predicts a lower PE than other models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a dense ad hoc wireless network comprising n nodes confined to a given two dimensional region of fixed area. For the Gupta-Kumar random traffic model and a realistic interference and path loss model (i.e., the channel power gains are bounded above, and are bounded below by a strictly positive number), we study the scaling of the aggregate end-to-end throughput with respect to the network average power constraint, P macr, and the number of nodes, n. The network power constraint P macr is related to the per node power constraint, P macr, as P macr = np. For large P, we show that the throughput saturates as Theta(log(P macr)), irrespective of the number of nodes in the network. For moderate P, which can accommodate spatial reuse to improve end-to-end throughput, we observe that the amount of spatial reuse feasible in the network is limited by the diameter of the network. In fact, we observe that the end-to-end path loss in the network and the amount of spatial reuse feasible in the network are inversely proportional. This puts a restriction on the gains achievable using the cooperative communication techniques studied in and, as these rely on direct long distance communication over the network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cooperative relaying combined with selection has been extensively studied in the literature to improve the performance of interference-constrained secondary users in underlay cognitive radio (CR). We present a novel symbol error probability (SEP)-optimal amplify-and-forward relay selection rule for an average interference-constrained underlay CR system. A fundamental principle, which is unique to average interference-constrained underlay CR, that the proposed rule brings out is that the choice of the optimal relay is affected not just by the source-to-relay, relay-to-destination, and relay-to-primary receiver links, which are local to the relay, but also by the direct source-to-destination (SD) link, even though it is not local to any relay. We also propose a simpler, practically amenable variant of the optimal rule called the 1-bit rule, which requires just one bit of feedback about the SD link gain to the relays, and incurs a marginal performance loss relative to the optimal rule. We analyze its SEP and develop an insightful asymptotic SEP analysis. The proposed rules markedly outperform several ad hoc SD link-unaware rules proposed in the literature. They also generalize the interference-unconstrained and SD link-unaware optimal rules considered in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cooperative relaying combined with selection exploits spatial diversity to significantly improve the performance of interference-constrained secondary users in an underlay cognitive radio network. We present a novel and optimal relay selection (RS) rule that minimizes the symbol error probability (SEP) of an average interference-constrained underlay secondary system that uses amplify-and-forward relays. A key point that the rule highlights for the first time is that, for the average interference constraint, the signal-to-interference-plus-noise-ratio (SINR) of the direct source-to-destination (SI)) link affects the choice of the optimal relay. Furthermore, as the SINR increases, the odds that no relay transmits increase. We also propose a simpler, more practical, and near-optimal variant of the optimal rule that requires just one bit of feedback about the state of the SD link to the relays. Compared to the SD-unaware ad hoc RS rules proposed in the literature, the proposed rules markedly reduce the SEP by up to two orders of magnitude.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

For point to point multiple input multiple output systems, Dayal-Brehler-Varanasi have proved that training codes achieve the same diversity order as that of the underlying coherent space time block code (STBC) if a simple minimum mean squared error estimate of the channel formed using the training part is employed for coherent detection of the underlying STBC. In this letter, a similar strategy involving a combination of training, channel estimation and detection in conjunction with existing coherent distributed STBCs is proposed for noncoherent communication in Amplify-and-Forward (AF) relay networks. Simulation results show that the proposed simple strategy outperforms distributed differential space-time coding for AF relay networks. Finally, the proposed strategy is extended to asynchronous relay networks using orthogonal frequency division multiplexing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A modified method has been developed for the deposition of transparent semiconducting thin films of tin oxide, involving the chemical vapour phase oxidation of tin iodide. These films show sheet resistances greater than 100 Ω/□ and an average optical transmission in the visible range exceeding 80%. The method avoids uncontrolled contamination, resulting in better reproducibility of the films. The films showed direct and indirect transitions and the possibility of an indirect forbidden transition. X-ray diffraction studies reveal that the films are polycrystalline. The low mobility values of the films have been attributed to the grain boundary scattering effect.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cooperative relay communication in a fading channel environment under the orthogonal amplify-and-forward (OAF), nonorthogonal and orthogonal selection decode-and-forward (NSDF and OSDF) protocols is considered here. The diversity-multiplexing gain tradeoff (DMT) of the three protocols is determined and DMT-optimal distributed space-time (ST) code constructions are provided. The codes constructed are sphere decodable and in some instances incur minimum possible delay. Included in our results is the perhaps surprising finding that the orthogonal and the nonorthogonal amplify-and-forward (NAF) protocols have identical DMT when the time durations of the broadcast and cooperative phases are optimally chosen to suit the respective protocol. Moreover our code construction for the OAF protocol incurs less delay. Two variants of the NSDF protocol are considered: fixed-NSDF and variable-NSDF protocol. In the variable-NSDF protocol, the fraction of time occupied by the broadcast phase is allowed to vary with multiplexing gain. The variable-NSDF protocol is shown to improve on the DMT of the best previously known static protocol when the number of relays is greater than two. Also included is a DMT optimal code construction for the NAF protocol.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Compressive sensing (CS) has been proposed for signals with sparsity in a linear transform domain. We explore a signal dependent unknown linear transform, namely the impulse response matrix operating on a sparse excitation, as in the linear model of speech production, for recovering compressive sensed speech. Since the linear transform is signal dependent and unknown, unlike the standard CS formulation, a codebook of transfer functions is proposed in a matching pursuit (MP) framework for CS recovery. It is found that MP is efficient and effective to recover CS encoded speech as well as jointly estimate the linear model. Moderate number of CS measurements and low order sparsity estimate will result in MP converge to the same linear transform as direct VQ of the LP vector derived from the original signal. There is also high positive correlation between signal domain approximation and CS measurement domain approximation for a large variety of speech spectra.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A parentheses-free code is suggested for the description of two-terminal electrical networks for computer analysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The electrical activation energy and optical band-gap of GeSe and GeSbSe thin films prepared by flash evaporation on to glass substrates have been determined. The conductivities of the films were found to be given by Image , the activation energy Ea being 0.53 eV and 0.40 eV for GeSe and GeSbSe respectively. The optical absorption constant α near the absorption edge could be described by Image from which the optical band-gaps E0 were found to be 1.01 eV for GeSe and 0.67 eV for GeSbSe at 300°K. At 110°K the corresponding values of E0 were 1.07 eV and 0.735 eV respectively. The significance of these values is discussed in relation to those of other amorphous semiconductors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The variation of electrical resistivity of an insulator-conductor composite, namely, wax-graphite composite, with parameters such as volume fraction, grain size, and temperature has been studied. A model is proposed to explain the observed variations, which assumes that the texture of the composite consists of insulator granules coated with conducting particles. The resistivity of these materials is controlled mainly by the contact resistance between the conducting particles and the number of contacts each particle has with its neighbors. The variation of resistivity with temperature has also been explained with the help of this model and it is attributed to the change in contact area. Journal of Applied Physics is copyrighted by The American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider single-source, single-sink multi-hop relay networks, with slow-fading Rayleigh fading links and single-antenna relay nodes operating under the half-duplex constraint. While two hop relay networks have been studied in great detail in terms of the diversity-multiplexing tradeoff (DMT), few results are available for more general networks. In this two-part paper, we identify two families of networks that are multi-hop generalizations of the two hop network: K-Parallel-Path (KPP) networks and Layered networks. In the first part, we initially consider KPP networks, which can be viewed as the union of K node-disjoint parallel paths, each of length > 1. The results are then generalized to KPP(I) networks, which permit interference between paths and to KPP(D) networks, which possess a direct link from source to sink. We characterize the optimal DMT of KPP(D) networks with K >= 4, and KPP(I) networks with K >= 3. Along the way, we derive lower bounds for the DMT of triangular channel matrices, which are useful in DMT computation of various protocols. As a special case, the DMT of two-hop relay network without direct link is obtained. Two key implications of the results in the two-part paper are that the half-duplex constraint does not necessarily entail rate loss by a factor of two, as previously believed and that, simple AF protocols are often sufficient to attain the best possible DMT.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider a dense, ad hoc wireless network confined to a small region, such that direct communication is possible between any pair of nodes. The physical communication model is that a receiver decodes the signal from a single transmitter, while treating all other signals as interference. Data packets are sent between source-destination pairs by multihop relaying. We assume that nodes self-organise into a multihop network such that all hops are of length d meters, where d is a design parameter. There is a contention based multiaccess scheme, and it is assumed that every node always has data to send, either originated from it or a transit packet (saturation assumption). In this scenario, we seek to maximize a measure of the transport capacity of the network (measured in bit-meters per second) over power controls (in a fading environment) and over the hop distance d, subject to an average power constraint. We first argue that for a dense collection of nodes confined to a small region, single cell operation is efficient for single user decoding transceivers. Then, operating the dense ad hoc network (described above) as a single cell, we study the optimal hop length and power control that maximizes the transport capacity for a given network power constraint. More specifically, for a fading channel and for a fixed transmission time strategy (akin to the IEEE 802.11 TXOP), we find that there exists an intrinsic aggregate bit rate (Theta(opt) bits per second, depending on the contention mechanism and the channel fading characteristics) carried by the network, when operating at the optimal hop length and power control. The optimal transport capacity is of the form d(opt)((P) over bar (t)) x Theta(opt) with d(opt) scaling as (P) over bar (1/eta)(t), where (P) over bar (t) is the available time average transmit power and eta is the path loss exponent. Under certain conditions on the fading distribution, we then provide a simple characterisation of the optimal operating point.