148 resultados para DIFFERENTIAL GAIN
em Indian Institute of Science - Bangalore - Índia
Resumo:
A finite gain differential amplifier is used along with a few passive RC elements to simulate an inductor. Methods for obtaining low Q inductance and frequency dependent high QI inductance are described. Sensitivity analysis when the gain varies is also included.
Resumo:
In this paper, we present a differential-geometric approach to analyze the singularities of task space point trajectories of two and three-degree-of-freedom serial and parallel manipulators. At non-singular configurations, the first-order, local properties are characterized by metric coefficients, and, geometrically, by the shape and size of a velocity ellipse or an ellipsoid. At singular configurations, the determinant of the matrix of metric coefficients is zero and the velocity ellipsoid degenerates to an ellipse, a line or a point, and the area or the volume of the velocity ellipse or ellipsoid becomes zero. The degeneracies of the velocity ellipsoid or ellipse gives a simple geometric picture of the possible task space velocities at a singular configuration. To study the second-order properties at a singularity, we use the derivatives of the metric coefficients and the rate of change of area or volume. The derivatives are shown to be related to the possible task space accelerations at a singular configuration. In the case of parallel manipulators, singularities may lead to either loss or gain of one or more degrees-of-freedom. For loss of one or more degrees-of-freedom, ther possible velocities and accelerations are again obtained from a modified metric and derivatives of the metric coefficients. In the case of a gain of one or more degrees-of-freedom, the possible task space velocities can be pictured as growth to lines, ellipses, and ellipsoids. The theoretical results are illustrated with the help of a general spatial 2R manipulator and a three-degree-of-freedom RPSSPR-SPR parallel manipulator.
Resumo:
Modern pulse-width-modulated (PWM) rectifiers use LC L filters that can be applied in both the common mode and differential mode to obtain high-performance filtering. Interaction between the passive L and C components in the filter leads to resonance oscillations. These oscillations need to be damped either by the passive damping or active damping. The passive damping increases power loss and can reduce the effectiveness of the filter. Methods of active damping, using control strategy, are lossless while maintaining the effectiveness of the filters. In this paper, an active damping strategy is proposed to damp the oscillations in both line-to-line and line-to-ground. An approach based on pole placement by the state feedback is used to actively damp both the differential-and common-mode filter oscillations. Analytical expressions for the state-feedback controller gains are derived for both continuous and discrete-time model of the filter. Tradeoff in selection of the active damping gain on the lower order power converter harmonics is analyzed using a weighted admittance function. Experimental results on a 10-kVA laboratory prototype PWM rectifier are presented. The results validate the effectiveness of the active damping method, and the tradeoff in the settings of the damping gain.
Resumo:
Heat shock promoters of mycobacteria are strong promoters that become rapidly upregulated during macrophage infection and thus serve as valuable candidates for expressing foreign antigens in recombinant BCG vaccine. In the present study, a new heat shock promoter controlling the expression of the groESL1 operon was identified and characterized. Mycobacterium tuberculosis groESL1 operon codes for the immunodominant 10 kDa (Rv3418c, GroES/Cpn10/Hsp10) and 60 kDa (Rv3417c, GroEL1/Cpn60.1/Hsp60) heat shock proteins. The basal promoter region was 115 bp, while enhanced activity was seen only with a 277-bp fragment. No promoter element was seen in the groES-groEL1 intergenic region. This operon codes for a bicistronic mRNA transcript as determined by reverse transcriptase-PCR and Northern blot analysis. Primer extension analysis identified two transcriptional start sites (TSSs) TSS1 (-236) and TSS2 (-171), out of which one (TSS2) was heat inducible. The groE promoter was more active than the groEL2 promoter in Mycobacterium smegmatis. Further, it was found to be differentially regulated under stress conditions, while the groEL2 promoter was constitutive.
Resumo:
We have studied two person stochastic differential games with multiple modes. For the zero-sum game we have established the existence of optimal strategies for both players. For the nonzero-sum case we have proved the existence of a Nash equilibrium.
Resumo:
Developing novel drugs against the unicellular parasite Plasmodium is complicated by the paucity of simple screening systems. Heat-shock proteins are an essential class of proteins for the parasite's cyclical life style between different cellular milieus and temperatures. The molecular chaperone Hsp90 assists a large variety of proteins, but its supporting functions for many proteins that are important for cancer have made it into a well-studied drug target. With a better understanding of the differences between Hsp90 of the malarial parasite and Hsp90 of its human host, new therapeutic options might become available. We have generated a set of isogenic strains of the budding yeast Saccharomyces cerevisiae where the essential yeast Hsp90 proteins have been replaced with either of the two human cytosolic isoforms Hsp90 alpha or Hsp90 beta, or with Hsp90 from Plasmodium falciparum (Pf). All strains express large amounts of the Flag-tagged Hsp90 proteins and are viable. Even though the strain with Pf Hsp90 grows more poorly, it provides a tool to reconstitute additional aspects of the parasite Hsp90 complex and its interactions with substrates in yeast as a living test tube. Upon exposure of the set of Hsp90 test strains to the two Hsp90 inhibitors radicicol (Rd) and geldanamycin (GA), we found that the strain with Pf Hsp90 is relatively more sensitive to GA than to Rd compared to the strains with human Hsp90's. This indicates that this set of yeast strains could be used to screen for new Pf Hsp90 inhibitors with a wider therapeutic window.
Resumo:
A role for oestrogen in regulating fluid reabsorption in the monkey epididymis was recently demonstrated. Here, these Studies are extended to identify potential oestrogen-regulated proteins in the cauda region of monkey epididymis treated with vehicle and oestrogen receptor antagonist (ICI 182780). Two-dimensional electrophoretic analysis was used to identify the proteins. The results indicated down-regulation of WNT4 in the ICI-182780-treated monkey cauda. In addition. the Wnt4f mRNA concentration was also reduced in the caput regions of ICI-182780-treated rats and oestrogen receptor knockout mice. WNT4 is a key regulator of gonadal differentiation in humans and mice and plays a pivotal role in early mouse embryogenesis. The results of the present Study establish the presence of WNT4 in the monkey epididymis and its regulation by oestrogen, and Suggest a role for WNT4 in maintaining epididymal homeostasis.
Resumo:
We study a zero sum differential game of mixed type where each player uses both control and stopping times. Under certain conditions we show that the value function for this problem exists and is the unique viscosity solution of the corresponding variational inequalities. We also show the existence of saddle point equilibrium for a special case of differential game.
Resumo:
An analytical method has been proposed to optimise the small-signaloptical gain of CO2-N2 gasdynamic lasers (gdl) employing two-dimensional (2D) wedge nozzles. Following our earlier work the equations governing the steady, inviscid, quasi-one-dimensional flow in the wedge nozzle of thegdl are reduced to a universal form so that their solutions depend on a single unifying parameter. These equations are solved numerically to obtain similar solutions for the various flow quantities, which variables are subsequently used to optimize the small-signal-gain. The corresponding optimum values like reservoir pressure and temperature and 2D nozzle area ratio also have been predicted and graphed for a wide range of laser gas compositions, with either H2O or He as the catalyst. A large number of graphs are presented which may be used to obtain the optimum values of small signal gain for a wide range of laser compositions without further computations.
Resumo:
Some new observations on the phenomenon of photocapacitane on n-type silicon MOS structures under low intensities of illumination are reported. The difference between the illuminated and dark C---characteristics is automatically followed as a function of the applied bias thereby obtaining the differential photocapacitance and the resulting characteristics has been termed as the Low Intensity Differential Photocapacitance (LIDP). For an MOS capacitor, the LIDP characteristics is seen to go through a well defined maximum. The phenomenon has been investigated under different ambient conditions like light intensity, temperature, dependance of the frequency of the light etc. and it has been found that the phenomenon is due to a band excband excitation. In this connection, a novel sensitive technique for the measurement of the capacitance based upon following the frequency changes of a tank circuit is also described in some detail. It is also shown that the phenomenon can be understood by a simple theoretical model.
Resumo:
This paper presents the architecture of a fault-tolerant, special-purpose multi-microprocessor system for solving Partial Differential Equations (PDEs). The modular nature of the architecture allows the use of hundreds of Processing Elements (PEs) for high throughput. Its performance is evaluated by both analytical and simulation methods. The results indicate that the system can achieve high operation rates and is not sensitive to inter-processor communication delay.
Resumo:
The development of algorithms, based on Haar functions, for extracting the desired frequency components from transient power-system relaying signals is presented. The applications of these algorithms to impedance detection in transmission line protection and to harmonic restraint in transformer differential protection are discussed. For transmission line protection, three modes of application of the Haar algorithms are described: a full-cycle window algorithm, an approximate full-cycle window algorithm, and a half-cycle window algorithm. For power transformer differential protection, the combined second and fifth harmonic magnitude of the differential current is compared with that of fundamental to arrive at a trip decision. The proposed line protection algorithms are evaluated, under different fault conditions, using realistic relaying signals obtained from transient analysis conducted on a model 400 kV, 3-phase system. The transformer differential protection algorithms are also evaluated using a variety of simulated inrush and internal fault signals.
Resumo:
A 10 MHz pulsed NMR spectrometer, built using mostly solid state devices, is described. The pulse programmer provides 2-pulse, 3-pulse, saturation burst and Carr-Purcell sequences both in repetitive and manual modes of operation. The transmitter has a maximum power output of ∼ 2 kW with a 75 Ω output impedance termination. The total gain of the receiver system is around 120 dB with a minimum band width of 2 MHz. The recovery time of the receiver is ∼ 7 µsec. A two-channel boxcar integrator capable of working in the single channel, differential and double boxcar modes provides signal to noise ratio improvement. The sensitivity and the linearity of the boxcar integrator are ∼ 2 mV and ∼ 0.1% respectively.
Resumo:
The current-biased single electron transistor (SET) (CBS) is an integral part of almost all hybrid CMOS SET circuits. In this paper, for the first time, the effects of energy quantization on the performance of CBS-based circuits are studied through analytical modeling and Monte Carlo simulations. It is demonstrated that energy quantization has no impact on the gain of the CBS characteristics, although it changes the output voltage levels and oscillation periodicity. The effects of energy quantization are further studied for two circuits: negative differential resistance (NDR) and neuron cell, which use the CBS. A new model for the conductance of NDR characteristics is also formulated that includes the energy quantization term.
Resumo:
This paper proposes a novel application of differential evolution to solve a difficult dynamic optimisation or optimal control problem. The miss distance in a missile-target engagement is minimised using differential evolution. The difficulty of solving it by existing conventional techniques in optimal control theory is caused by the nonlinearity of the dynamic constraint equation, inequality constraint on the control input and inequality constraint on another parameter that enters problem indirectly. The optimal control problem of finding the minimum miss distance has an analytical solution subject to several simplifying assumptions. In the approach proposed in this paper, the initial population is generated around the seed value given by this analytical solution. Thereafter, the algorithm progresses to an acceptable final solution within a few generations, satisfying the constraints at every iteration. Since this solution or the control input has to be obtained in real time to be of any use in practice, the feasibility of online implementation is also illustrated.