337 resultados para Copper content
em Indian Institute of Science - Bangalore - Índia
Resumo:
Copper(II) complexes of quaternised poly(4-vinylpyridine) (PVP) of different degrees of quaternisation and copper content have been prepared by crosslinking the polymer with 1,2-dibromoethane in the presence of Cu2+ ion as template. The stability constant of the PVP---Cu(II) complexes is found to increase with the degree of crosslinking quaternisation of the resin, but the rate at which Cu2+ is adsorbed by the resin decreases. An optimum combination of both stability and rate can be achieved with a moderate degree (31%) of crosslinking. A kinetic study reveals that quaternisation increases significantly the catalytic activity of the complex for the oxidation of S2O2−3 by O2 compared with PVP----Cu(II) without quaternisation, but it deactivates the complex for the oxidation of both S3O2−6 and S4O2−6. The batch reactor oxidation kinetics at pH 2.16, where the rate is observed to be maximum, is well explained by the Langmuir—Hinshelwood model assuming the coordination of both O2 and thioanion to Cu(II) as a precursor to the oxidation reaction.
Resumo:
An amorphous phase has been synthesized by mechanical alloying in a planetary mill over a nickel content range of 10�70 at.% in the Ti---Ni system and a copper content range of 10�50 at.% in the Ti---Cu system. In the case of ternary Ti---Ni---Cu alloys the glass-forming composition range has been found to be given by x = 10�20 for Ti60Ni40 ? xCux, x = 10 � 30 for Ti50Ni50 ? xCux and x = 10 � 40 for Ti40Ni60 ? xCux alloys. The difficulty in the amorphization of copper-rich compositions is explained in the light of enthalpy composition diagrams calculated for the ternary solid solution and the amorphous phase.
Resumo:
The interfacial reactions between several Au(Cu) alloys and pure Sn were studied experimentally at 200A degrees C. Amounts of Cu in the AuSn4 and AuSn2 phases were as low as 1 at.%. On the basis of these experimental results there is no continuous solid solution between (Au,Cu)Sn and (Cu,Au)(6)Sn-5. The copper content of (Au,Cu)Sn was determined to be approximately 7-8 at.%. Substantial amounts of Au were present in the (Cu,Au)(6)Sn-5 and (Cu,Au)(3)Sn phases. Two ternary compounds were formed, one with stoichiometry varying from (Au40.5Cu39)Sn-20.5 to (Au20.2Cu59.3)Sn-20.5 (ternary ``B''), the other with the composition Au34Cu33Sn33 (ternary ``C''). The measured phase boundary compositions of the product phases are plotted on the available Au-Cu-Sn isotherm and the phase equilibria are discussed. The complexity and average thickness of the diffusion zone decreases with increasing Cu content except for the Au(40 at.%Cu) couple.
Resumo:
X-ray absorpion near edge structure (xanes) of copper compounds with copper in 1+, 2+ and 3+ states has been studied. Extended x-ray absorption fine structure (exafs) has been employed to determine bond distances and coordination numbers in several model copper compounds. Employing bothxanes andexafs, the structure of the copper complex formed by the micro-organismPseudomonas aeruginosa has been shown to be square-planar with the Cu-O distance close to that in cupric glucuronates and cupric acetylacetonate.exafs has been shown to be useful for studying metal-metal bonds in copper carboxylates.
Resumo:
In the present investigation, experiments were conducted on a tribological couple-copper pin against steel plate-using an inclined pin-on-plate sliding tester to understand the role of surface texture and roughness parameters of the plate on the coefficient friction and transfer layer formation. Two surface characteristics of the steel plates-roughness and texture-were varied in the tests. It was observed that the transfer layer formation and the coefficient of friction along with its two components, namely, the adhesion and plowing, are controlled by the surface texture of the plate. The plowing component of friction was highest for the surface texture that promotes plane strain conditions while it was lowest for the texture that favors plane stress conditions at the interface. Dimensionless quantifiable roughness parameters were formulated to describe the degree of plowing and hence the plane strain/stress type deformations taking place at the asperity level.
Resumo:
The nitrosation of monophenylamido substituted quadridentate Schiff base complexes of copper(II) are observed to adopt N-bonded isonitroso coordination whereas the phenylisocyanation of the corresponding mononitrosated quadridentate complexes are found to prefer O-bonded isonitroso coordination.
Resumo:
The complexing ability of a new series of ligands, β-N-arylimine hydrazones, toward Ni (II) and Cu (II) ions has been studied. The isolated complexes are characterised on the basis of elemental analysis, spectroscopic methods and magnetic susceptibility measurements. The ligands are notentially bidentate in character coordinating to divalent metal ions through the N1 and N5 nitrogens. Square planar geometry of the metal ions is suggested on the basis of experimental evidence.
Resumo:
Preparation and structural characterization of palladium (II) complexes of ligands III-V and copper (II) complexes of III are reported. The elemental analyses of the complexes show that the metal: ligand ratio is 1 : 2. The electrical conductance in acetone shows the non-electrolytic nature of the complexes. The diamagnetic character suggests a gross square-planar geometry for the palladium (II) complexes. Copper (II) complexes are paramagnetic with/~eff.~l'90 B.M. Spectral data suggest that in all the complexes the ligand coordinates to the metal (II) symmetrically through isonitroso-nitrogen and imine-nitrogen, forming a ¡ membered chelate ring. Amine-exchange reactions of the complexes are discussed and compared on the basis of their structures.
Resumo:
A study of the hyperfine interaction in the ESR of Cu-Cu pairs in single crystals of copper diethyldithiocarbamate as a function of temperature has shown distinct differences in the hyperfine structure in the two fine structure transitions at 20 K, the spectrum not having the same hyperfine intensity pattern in the low field fine structure transition in contrast to that of the high field transition. The details of the structure of both the fine structure transitions in the 20 K spectrum have now been explained by recognizing the fact that the mixing of the nuclear spin states caused by the anisotropic hyperfine interaction affects the electron spin states | + 1 > and | −> differently. This has incidentally led to a determination of the sign ofD confirming the earlier model. The anomalous hyperfine structure is found to become symmetric at 77 K and 300 K. It is proposed that the reason for this lies in the dynamics of spin-lattice interaction which limits the lifetime of the spin states in each of the electronic levels | − 1 >, | 0 > and | + 1 > The estimate of spin-lattice relaxation time agrees with those indicated from other studies. The model proposed here for the hyperfine interaction of pairs in the electronic triplet state is of general validity.
Resumo:
Carbon nanotubes (CNTs) were discovered by Iijima in 1991 as the fourth form of carbon. Carbon nanotubes are the ultimate form of the carbon fibre because of its high Young's modulus in the order of 1 TPa, which is very useful for load transfer in nanocomposites. In the present work, CNT/Cu nanocomposites were fabricated by the powder metallurgy technique, and after extrusion of the nanocomposites, bright field transmission electron microscopic studies were carried out. From the transmission electron microscopic images obtained, a novel method of ascertaining the Young's modulus of multiwalled CNTs is worked out in the present paper, which turns out to be 0.94 TPa, which is consistent with experimental results. Furthermore, an attempt is made to investigate the microhardness of copper by reinforcing it with multiwalled CNTs. There is an increase in hardness by twofold in CNT/Cu nanocomposites as compared to pure Cu matrix. This is due to high relative density, even distribution of CNTs and proper bonding at CNT/Cu interfaces.
Resumo:
The variations in certain spin-Hamiltonian parameters of the Cu++ ion in dibarium copper formate tetrahydrate with temperature have been studied. Optical absorption investigations on single crystals of the salt at room temperature and 90° K. are reported. The results are discussed in terms of a model in which vibronic mixing of certain electron levels of the Cu++ ion play an important role.
Resumo:
The hydrolysis of cupric ion has been studied at various ionic strengths (0·01, 0·05, 0·1 and 0·5 M). The results are analyzed employing 'core + links' theory, log-log plot, normalization plot, and extrapolation method for obtaining the pure mononuclear curve. The stability constants of Cu2(OH)2++, Cu3(OH)4++, Cu(OH)+ and Cu(OH)2 have been reported.
Resumo:
ESR investigations on dilute single crystals of dibarium copper formate tetrahydrate, at room temperature and 90° K. have been described. A general method used for the evaluation of theg-tensor in this triclinic crystal, which contains only one ion in the unit cell, has been discussed. A detailed account of the evaluation of the quadrupole interaction is given. Expressions for the positions of the hyperfine levels of the lowest Kramer’s doublet of the Cu++ ion in the magnetic field have been worked out for the case when B and Q are of similar magnitude.
Resumo:
Potentiometric, spectrophotometric and polarographic evidence has been presented for the formation of mixed hydroxy complexes in coppermonoethanolamine system. A method has been developed for the analysis of Bjerrum formation curves taken in presence of 0·1, 0·2, 0·5 and 1·0 M monoethanolammonium ion with respect to hydroxy complexes. The formation of CuAOH+, CuA2OH+ and CuA3OH+ is shown and the corresponding stability constants are calculated at different concentrations of MEA ion. Curves showing the distribution of pure and hydroxy complexes at various pA values in solutions containing different concentrations of MEA ion have also been given.