309 resultados para Copper Amine Oxidase

em Indian Institute of Science - Bangalore - Índia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A ternary metal-nucleotide complex, Na2[Cu(5’-IMP)2(im)o,8(H20)l,2(H20)2h]as~ 1be2e.n4 pHr2ep0a,r ed and its structure analyzed by X-ray diffraction (5’-IMP = inosine 5’-monophos hate; im = imidazole). The complex crystallizes in space group C222, with a = 8.733 (4) A, b = 23.213 (5) A, c = 21.489 (6) 1, and Z = 4. The structure was solved by the heavy-atom method and refined by full-matrix least-squares technique on the basis of 2008 observed reflections to a final R value of 0.087. Symmetry-related 5’-IMP anions coordinate in cis geometry through the N(7) atoms of the bases. The other cis positions of the coordination plane are statistically occupied by nitrogen atoms of disordered im groups and water oxygens with occupancies 0.4 and 0.6, respectively. Water oxygens in axial positions complete the octahedral coordination of Cu(I1). The complex is isostructural with C~S-[P~(S’-IMP),(NH~)~a] m”,o del proposed for Pt(I1) binding to DNA. The base binding observed in the present case is different from the typical ”phosphate only” binding shown from earlier studies on metal-nucleotide complexes containing various other ?r-aromatic amines.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The 1:1 and 1:2 cooper(II) complexes with the tridentate compound bis(benzimidazol-2-ylmethyl)amine (L(1)) and its benzimidazole (L(2)) and amine (L(3)) N-methyl-substituted derivatives have been prepared and their spectroscopic properties studied. While the 1:1 complexes are of the type CuLX(2) nH(2)O (X = C/O-4(-), NO3-, Cl- or Br-), the 1:2 complexes are of the type CuL(2) (ClO4)(2) nH(2)O (L = L(1) or L(3), n = 0-4). In all these complexes L acts as a tridentate ligand with the amine nitrogen and both the benzimidazole nitrogens co-ordinating to Cu-II. The complex [CuL(2)(1)][ClO4](2) 2H(2)O crystallises in the monoclinic space group P2(1)/c with a = 9.828(2), b = 9.546(2) and c = 19.906(2) Angstrom and beta = 95.71(1)degrees, for Z = 2. The R value is 0.0635 for 2180 significant reflections. The copper(II) ion has an elongated octahedral geometry with four equatorial benzimidazole and two long-distance axial amine N donors. The Cu-N-bzim and Cu-N-amine distances are 2.011(4) and 2.597(6) Angstrom respectively. Factors favouring facial co-ordination to tridentate ligands are discussed. The 1:1 complexes involve meridonal co-ordination of the ligands, with square-based geometry as revealed by ligand-field and EPR spectral properties. The NMe substitution as in CuL(3)(ClO4)(2) confers low V ($) over tilde$$(max) and high E(1/2) for the cu(II)-Cu-I couple. Most of the 1:1 complexes are less reversible but exhibit E(1/2) values more positive than those of the corresponding 1:2 complexes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Microbial transformation of N, N-dimethyl-p-phenylene diamine (DMPDA), a microbial product formed from the fungicide fenaminosulf (p-dimethylaminobenzenediazo sodium sulfonate) was studied by enriching microbes in soils treated with the amine. Microorganisms isolated from DMPDA-treated soil belonged to the genera of Micrococcus, Alcaligenes, and Corynebacterium. Of the various isolates, Alcaligenes DM4 showed maximal growth on DMPDA utilizing it as sources of carbon and nitrogen. When grown in mineral salts basal medium containing 0.05% DMPDA to serve as carbon and nitrogen sources, Alcaligenes DM4 grew exponentially up to 18 h. Even though the characterization of the complete pathway of microbial degradation of DMPDA could not be carried out due to the auto-oxidation of the compound, the initial transformation product of DMPDA by Alcaligenes DM4 has been identified as a dimer. The dimer is generated into the culture medium presumably by the extra-cellular oxidase of Alcaligenes DM4. It is suggested that the risk-benefit evaluation on the use of fenaminosulf is to be made taking into consideration the microbial transformations of the fungicide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Preparation and structural characterization of palladium (II) complexes of ligands III-V and copper (II) complexes of III are reported. The elemental analyses of the complexes show that the metal: ligand ratio is 1 : 2. The electrical conductance in acetone shows the non-electrolytic nature of the complexes. The diamagnetic character suggests a gross square-planar geometry for the palladium (II) complexes. Copper (II) complexes are paramagnetic with/~eff.~l'90 B.M. Spectral data suggest that in all the complexes the ligand coordinates to the metal (II) symmetrically through isonitroso-nitrogen and imine-nitrogen, forming a ¡ membered chelate ring. Amine-exchange reactions of the complexes are discussed and compared on the basis of their structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two new copper(II) complexes, [Cu-2(L-1)(2)](ClO4)(2) (1) and [Cu(L-2)(ClO4)] (2), of the highly unsymmetrical tetradentate (N3O) Schiff base ligands HL1 and HL2 (where HL1 = N-(2-hydroxyacetophenone)-bis-3-aminopropylamine and HL2 = N-(salicyldehydine)-bis-3-aminopropylamine) have been synthesised using a template method. Their single crystal X-ray structures show that in complex 1 two independent copper(II) centers are doubly bridged through sphenoxo-O atoms (O1A and O1B) of the two ligands and each copper atom is five-coordinated with a distorted square pyramidal geometry. The asymmetric unit of complex 2 consists of two crystallographically independe N-(salicylidene) bis(aminopropyl)amine-copper(II) molecules, A and B, with similar square pyramidal geometries. Cryomagnetic susceptibility measurements (5-300 K) on complex 1 reveal a distinct antiferromagnetic interaction with J=-23.6 cm(-1), which is substantiated by a DFT calculation (J=-27.6 cm(-1)) using the B3LYP functional. Complex 1, immobilized over highly ordered hexagonal mesoporous silica, shows moderate catalytic activity for the epoxidation of cyclohexene and styrene in the presence of TBHP as an oxidant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mononuclear copper(II) complexes of tri- and tetra-dentate tripodal ligands containing phenolic hydroxyl and benzimidazole or pyridine groups have been isolated. They are of the type (CuL(X)].nH2O, [CuL(H2O)]X.nH2O or [CuL].nH2O where X = Cl-, ClO4-, N3- or NCS- and n = 0-4. The electronic spectra of all the complexes exhibit a broad absorption band around 14000 cm-1 and the polycrystalline as well as the frozen-solution EPR spectra are axial, indicating square-based geometries. The crystal structure of [CuL(Cl)] [HL = (2-hydroxy-5-nitrobenzyl)bis(2-pyridyl-methyl)amine] revealed a square-pyramidal geometry around Cu(II). The mononuclear complex crystallises in the triclinic space group P1BAR with a = 6.938(1), b = 11.782(6), c = 12.678(3) angstrom and alpha = 114.56(3), beta = 92.70(2), gamma = 95.36(2)-degrees. The co-ordination plane is comprised of one tertiary amine and two pyridine nitrogens and a chloride ion. The phenolate ion unusually occupies the axial site, possibly due to the electron-withdrawing p-nitro group. The enhanced pi delocalisation involving the p-nitrophenolate donor elevates the E1/2 values. The spectral and electrochemical results suggest the order of donor strength as nitrophenolate < pyridine < benzimidazole in the tridentate and nitrophenolate < benzimidazole < pyridine in the tetradentate ligand complexes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis, X-ray crystal structure, and magnetic properties of an angular trinuclear copper(II) complex [Cu3(O2CMC)4(bpy)3(H2O)](PF6)2 (1), obtained from a reaction of Cu2(O2CMe)4(H2O)2 With 2,2'-bipyridine (bpy) and NH4PF6 in ethanol, are reported. Complex 1 crystallizes in triclinic space group P1BAR with a = 11.529(1) angstrom, b = 12.121(2) angstrom, c = 17.153(2) angstrom, alpha = 82.01(1)-degrees, beta = 79.42(1)-degrees, gamma = 89.62(1)-degrees, and Z = 2. A total of 6928 data with I > 2.5sigma(I) were refined to R = 0.0441 and R(w) = 0.0557. The structure consists of a trinuclear core bridged by four acetate ligands showing different bonding modes. The coordination geometry at each copper is distorted square-pyramidal with a CuN2O2...O chromophore. The Cu...Cu distances are 3.198(1) angstrom, 4.568(1) angstrom, and 6.277(1) angstrom. There are two monoatomic acetate bridges showing Cu-O-Cu angles of 93.1(1) and 97.5(1)-degrees. Magnetic studies in the temperature range 39-297 K show the presence of a strong ferromagnetically coupled dicopper(II) unit (2J = +158 cm-1) and an essentially isolated copper(II) center (2J' = -0.4 cm-1) in 1. The EPR spectra display an axial spectrum giving g(parallel-to) = 2.28 (A(parallel-to) = 160 X 10(-4) cm-1) and g(perpendicular-to) = 2.06 (A(perpendicular-to) = 12 X 10(-4) cm-1) for the normal copper and two intense isotropic signals with g values 2.70 and 1.74 for the strongly coupled copper pair. The structural features of 1 compare well with the first generation models for ascorbate oxidase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ternary metal deoxyribonucleotide complex [Cu(bzim)(5?-dGMP)(H2O)3](bzim = benzimidazole, 5?-dGMP = 2?-deoxyguanosine 5?-monophosphate) has been prepared and the structure analysed by X-ray diffraction. The compound crystallizes in the space group P1 with a= 7.069(6), b= 13.959(10), c= 14.204(12)Å, ?= 75.12(6), ?= 94.15(6), ?= 97.98(6)° and Z= 2. The structure was solved by the heavy-atom method and refined by full-matrix least-squares procedures on the basis of 2813 observed [I[gt-or-equal] 3?(I)] reflections to final R and R? values of 0.050 and 0.052 respectively. There are two independent molecules in the asymmetric unit and both copper(II) centres have square-pyramidal co-ordination geometry. An unusual feature of the structure is the co-ordination of the metal by N(7) of the base, in the presence of a ?-aromatic amine, bzim. The structure is stabilized by intermolecular base�bzim stacking. The nucleotides of both the molecules have an anti conformation about the glycosyl bond, and a gauche-gauche conformation about the C(4?)�C(5?) bond. A feature of particular interest is the unusual sugar conformation. The base furanose rings of the two nucleotide molecules adopt C(3?)-exo/C(2?)-endo pucker and C(3?)-exo pucker respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

P-aminobenzoate- intercalated copper hydroxysalt was prepared by coprecipitation at high pH (similar to 12). As the pH was reduced to similar to 7 on washing with water, the development of partial positive charge on the amine end of the intercalated anion caused repulsion between the layers leading to delamination and colloidal dispersion of monolayers of copper hydroxysalt in water. The dispersed copper hydroxysalt monolayers were used as precursors for the synthesis of copper(I)/(II) oxide nanoparticles at room temperature. While the hydroxysalt layers yielded spindle-shaped CuO particles when left to stand, they formed hollow spherical nanoparticles of Cu(2)O when treated with an alkaline solution of ascorbic acid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Engineering at the molecular level is one of the most exciting new developments for the generation of functional materials. However, the concept of designing polynuclear extended structures from bottom up is still not mature. Although progress has been made with secondary building units (SBUs) in metal organic frameworks (MOFs), the control seems to be just an illusion when it comes to bridging ligands such as the azide ion. When we say that the azido ligand is versatile in its bridging capabilities, what we mean is that it would be difficult to predict or control its bridging properties. However, this kind of serendipity is not always bad news. For example, scientists have shown that the azido ligand can mediate magnetic exchanges between paramagnetic metals in a predictable fashion (usually depending upon the bonding geometries). Therefore, it is a well-respected ligand in polynuclear assemblies. Serendipitous assemblies offer new magnetic structures that we may not otherwise even think about synthesizing. The azido ligand forms a variety of complexes with copper(II) using different blocking amines or pyridine based ligands. Its structural nature changes upon changing the substitution on amine, as well as the amount of blocking ligand. In principle, if we take any of these complexes and provide more coordination sites to the bridging azido ligands by removing a fraction of the blocking ligands, we can get new complexes with intricate structural networks and therefore different magnetic properties with the same components as used for the parent complex. In this Account, we mainly discuss the development of a number of new topological and magnetic exchange systems synthesized using this concept. Not all of these new complexes can be grouped according to their basic building structures or even by the ratio of the metal to blocking ligand. Therefore, we divided the discussion by the nuclearity of the basic building structures. Some of the complexes with the same nuclearities have very similar or even almost identical basic structures. However, the way these building units are joined together (by the azido bridges) to form the overall extended structures differ almost in every case. The complexes having the Cu-6 core are particularly interesting from a structural point of view. Although they have almost identical basic structures, some of them are extended in three dimensions, but two of them are extended in two dimensions by two different bridging networks. In the complexes having linear Cu-4 basic units, we find that using similar ligands does not always give the same bridging networks even within the basic building structures. These complexes have also enriched the field of molecular magnetism. One of the complexes with a Cu-3 building unit has provided us with the opportunity to study the competing behavior of two different kinds of magnetic exchange mechanism (ferromagnetic and antiferromagnetic) acting simultaneously between two metal ions. Through density functional theory calculations, we showed how they work independently and their additive nature to produce the overall effect. The exciting methodology for the generation of copper(II) polyclusters presented in this Account will provide the opportunity to explore analogous serendipitous assembly of diverse structures with interesting magnetic behavior using other transition metal ions having more than one unpaired electrons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel colorimetric probe 1 based on the picolyl moiety has been designed and synthesized. Probe 1 is composed of a pyrene and a bispicolyl amine (BPA) unit, in which the BPA moiety acts as a binding unit and the binding phenomenon is sensed from the changes in the signaling subunit. The probe detects Cu2+ specifically in water and both Cu2+ and Hg2+ efficiently in neutral Brij-58 micellar media. The probe shows a color change visible to the naked eye upon addition of metal ions. Notably, in a micellar medium, probe 1 can detect both the Cu2+ and Hg2+ ions even at parts-per-billion levels. Furthermore, the probe shows ratiometric detection of both the metal ions making the sensing quantitative. The two metal ions could be discriminated both visibly under a UV lamp and with the use of fluorescence spectroscopy. The probe could be also used in biological cell lines for the detection of both Hg2+ and Cu2+ ions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new synthetic protocol based on one-pot, copper(I)-catalysed multicomponent reaction of formaldehyde, secondary amine and terminal alkyne has been employed to postsynthetically modify a self-assembled nanoscopic organic cage. By employing this synthetic strategy, three new cages appended with phenyl-, xylyl-and naphthyl-acetylene moieties have been synthesised. The resulting modified cages were characterised by using a range of spectroscopic techniques. The synthesised cages were fluorescent and thus one of them was tested to explore the potential use of such compounds as chemosensors for the detection of nitroaromatics. Experimental findings suggest a high selective quenching of initial fluorescence intensity in the presence of nitroaromatic compounds. Furthermore, it has been observed that among the various nitroaromatics tested, nitrophenolic compounds have better quenching ability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A strain of Thiobacillus ferrooxidans was adapted to grow at higher concentrations of copper by single step culturing in the presence of 20 g/L (0.314 mol/L) cupric ions added to 9K medium. Exposure to copper results in change in the surface chemistry of the microorganism. The isoelectric point of the adapted strain (pI=4.7) was observed to be at a higher pH than that of the wild unadapted strain(pI=2.0). Compared to the wild strain, the copper adapted strain was found to be more hydrophobic and showed enhanced attachment efficiency to the pyrite mineral. The copper adsorption ability of the adapted strain was also found to be higher than that of the wild strain. Fourier transform infrared spectroscopy of adapted cells suggested that a proteinaceous new cell surface component is synthesized by the adapted strain. Treatment of adapted cells with proteinase-K, resulted in complete loss of tolerance to copper, reduction in copper adsorption and hydrophobicity of the adapted cells. These observations strongly suggest a role played by cell surface modifications of Thiobacillus ferrooxidans in imparting the copper tolerance to the cells and bioleaching of sulphide minerals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three new (dialkylamino)pyridine (DAAP)-based ligand amphiphiles 3-5 have been synthesized. All of the compounds possess a metal ion binding subunit in the form of a 2,6-disubstituted DAAP moiety. In addition, at least one ortho-CH2OH substituent is present in all the ligands. Complex formation by these ligands with various metal ions were examined under micellar conditions, but only complexes with Cu(II) ions showed kinetically potent esterolytic capacities under micellar conditions. Complexes with Cu(II) were prepared in host comicellar cetyltrimethylammonium bromide (CTABr) media at pH 7.6. Individual complexes were characterized by UV-visible absorption spectroscopy and electron paramagnetic resonance spectroscopy. These metallomicelles speed the cleavage of the substrates p-nitrophenyl hexanoate or p-nitrophenyl diphenyl phosphate. To ascertain the nature of the active esterolytic species, the stoichiometries of the respective Cu(II) complexes were determined from the kinetic version of Job's plot. In all the instances, 2:1 complex ligand/Cu(II) ion are the most kinetically competent species. The apparent pK(a) values of the Cu(II)-coordinated hydroxyl groups of the ligands 3, 4, and 5, in the comicellar aggregate, are 7.8, 8.0, and 8.0, respectively, as estimated from the rate constant vs pH: profiles of the ester cleavage reactions. The nucleophilic metallomicellar reagents and the second-order "catalytic" rate constants toward esterolysis of the substrate p-nitrophenyl hexanoate (at 25 degrees C, pH 7.6) are 37.5 for 3, 11.4 for 4, and 13.8 for 5. All catalytic systems comprising the coaggregates of 3, 4, or 5 and CTABr demonstrate turnover behavior in the presence of excess substrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chain length of the surfactant and the solvent composition are two of the factors that determine whether the lamellar or the hexagonal form of mesoporous SiO2 (or ZrO2) is formed by the neutral amine route; a lamellar-hexagonal transformation occurs on removal of the amine from the former.