8 resultados para Consumer Demands
em Indian Institute of Science - Bangalore - Índia
Resumo:
The operation of thyristor-controlled static VAR compensators (SVCs) at various conduction angles can be used advantageously to meet the unablanced reactive power demands in a system. However, such operation introduces harmonic currents into the AC system. This paper presents an algorithm to evaluate an optimum combination of the phase-wise reactive power generations from SVC and balanced reactive power supply from the AC system, based on the defined performance indices, namely, the telephone influence factor (TIF), the total harmonic current factor (IT) and the distortion factor (D). Results of the studies conducted on a typical distribution system are presented and discussed.
Resumo:
The conclusion that the number of species co-existing within a biological community cannot exceed the number of limiting factors is not valid if we assume that (i) the relative efficiency of two competing species in utilizing a resource is not independent of the resource density, but one species may be more efficient at a lower density and less efficient at a higher density and (ii) there is a spatial or temporal heterogeneity in the density of the resource. This spatial or temporal heterogeneity does not have to be furnished by factors external to the biological community, but may be generated within the biological community itself as in the case of a vertical gradient of light in a plant community. This possibility of a stable co-existence of more than one species in a community limited by a single resource, even when the resource is being supplied uniformly in space and time, is formally demonstrated.
Resumo:
In this paper, we use reinforcement learning (RL) as a tool to study price dynamics in an electronic retail market consisting of two competing sellers, and price sensitive and lead time sensitive customers. Sellers, offering identical products, compete on price to satisfy stochastically arriving demands (customers), and follow standard inventory control and replenishment policies to manage their inventories. In such a generalized setting, RL techniques have not previously been applied. We consider two representative cases: 1) no information case, were none of the sellers has any information about customer queue levels, inventory levels, or prices at the competitors; and 2) partial information case, where every seller has information about the customer queue levels and inventory levels of the competitors. Sellers employ automated pricing agents, or pricebots, which use RL-based pricing algorithms to reset the prices at random intervals based on factors such as number of back orders, inventory levels, and replenishment lead times, with the objective of maximizing discounted cumulative profit. In the no information case, we show that a seller who uses Q-learning outperforms a seller who uses derivative following (DF). In the partial information case, we model the problem as a Markovian game and use actor-critic based RL to learn dynamic prices. We believe our approach to solving these problems is a new and promising way of setting dynamic prices in multiseller environments with stochastic demands, price sensitive customers, and inventory replenishments.
Resumo:
Remanufacturing activities in India are still in nascent stages. However, the substantial growth of Indian economy, coupled with serious issues of population and environmental burden demands a radical shift in market strategies and legislations. The scattered and inefficient product recovery methods prevalent in India are unable to cope with increasing environmental and economic burden on the society - remanufacturing seems to be a promising strategy to explore for these. Our study investigated from a user's context the opportunity of establishing remanufacturing as a formal activity, answering the fundamental questions of whether remanufactured products would be accepted by Indian consumers and how these will fit into the Indian market. The study of the Indian mobile phone market eco-system showed how mobile phones currently move through the value chain, and the importance of the grey and used phone markets in this movement. A prescriptive model has been proposed which utilizes the usage patterns of different consumer groups to create a self-sustainable demand-supply system, potentially complementing frameworks such as the Automotive Remanufacturing Decision-Making Framework (RDMF). (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents an approach to model the expected impacts of climate change on irrigation water demand in a reservoir command area. A statistical downscaling model and an evapotranspiration model are used with a general circulation model (GCM) output to predict the anticipated change in the monthly irrigation water requirement of a crop. Specifically, we quantify the likely changes in irrigation water demands at a location in the command area, as a response to the projected changes in precipitation and evapotranspiration at that location. Statistical downscaling with a canonical correlation analysis is carried out to develop the future scenarios of meteorological variables (rainfall, relative humidity (RH), wind speed (U-2), radiation, maximum (Tmax) and minimum (Tmin) temperatures) starting with simulations provided by a GCM for a specified emission scenario. The medium resolution Model for Interdisciplinary Research on Climate GCM is used with the A1B scenario, to assess the likely changes in irrigation demands for paddy, sugarcane, permanent garden and semidry crops over the command area of Bhadra reservoir, India. Results from the downscaling model suggest that the monthly rainfall is likely to increase in the reservoir command area. RH, Tmax and Tmin are also projected to increase with small changes in U-2. Consequently, the reference evapotranspiration, modeled by the Penman-Monteith equation, is predicted to increase. The irrigation requirements are assessed on monthly scale at nine selected locations encompassing the Bhadra reservoir command area. The irrigation requirements are projected to increase, in most cases, suggesting that the effect of projected increase in rainfall on the irrigation demands is offset by the effect due to projected increase/change in other meteorological variables (viz., Tmax and Tmin, solar radiation, RH and U-2). The irrigation demand assessment study carried out at a river basin will be useful for future irrigation management systems. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
Developing countries constantly face the challenge of reliably matching electricity supply to increasing consumer demand. The traditional policy decisions of increasing supply and reducing demand centrally, by building new power plants and/or load shedding, have been insufficient. Locally installed microgrids along with consumer demand response can be suitable decentralized options to augment the centralized grid based systems and plug the demand-supply gap. The objectives of this paper are to: (1) develop a framework to identify the appropriate decentralized energy options for demand supply matching within a community, and, (2) determine which of these options can suitably plug the existing demand-supply gap at varying levels of grid unavailability. A scenario analysis framework is developed to identify and assess the impact of different decentralized energy options at a community level and demonstrated for a typical urban residential community Vijayanagar, Bangalore in India. A combination of LPG based CHP microgrid and proactive demand response by the community is the appropriate option that enables the Vijayanagar community to meet its energy needs 24/7 in a reliable, cost-effective manner. The paper concludes with an enumeration of the barriers and feasible strategies for the implementation of community microgrids in India based on stakeholder inputs. (C) 2014 Elsevier Ltd. All rights reserved.