4 resultados para Cité
em Indian Institute of Science - Bangalore - Índia
Resumo:
This paper presents two approximate analytical expressions for nonlinear electric fields in the principal direction in axially symmetric (3D) and two dimensional (2D) ion trap mass analysers with apertures (holes in case of 3D traps and slits in case of 2D traps) on the electrodes. Considered together (3D and 2D), we present composite approximations for the principal unidirectional nonlinear electric fields in these ion traps. The composite electric field E has the form E = E-noaperture + E-aperture. where E-noaperture is the field within an imagined trap which is identical to the practical trap except that the apertures are missing and E-aperture is the field contribution due to apertures on the two trap electrodes. The field along the principal axis, of the trap can in this way be well approximated for any aperture that is not too large. To derive E-aperture. classical results of electrostatics have been extended to electrodes with finite thickness and different aperture shapes.E-noaperture is a modified truncated multipole expansion for the imagined trap with no aperture. The first several terms in the multipole expansion are in principle exact(though numerically determined using the BEM), while the last term is chosen to match the field at the electrode. This expansion, once Computed, works with any aperture in the practical trap. The composite field approximation for axially symmetric (3D) traps is checked for three geometries: the Paul trap, the cylindrical ion trap (CIT) and an arbitrary other trap. The approximation for 2D traps is verified using two geometries: the linear ion trap (LIT) and the rectilinear ion trap (RIT). In each case, for two aperture sizes (10% and 50% of the trap dimension), highly satisfactory fits are obtained. These composite approximations may be used in more detailed nonlinear ion dynamics Studies than have been hitherto attempted. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In recent work (Int. J. Mass Spec., vol. 282, pp. 112–122) we have considered the effect of apertures on the fields inside rf traps at points on the trap axis. We now complement and complete that work by considering off-axis fields in axially symmetric (referred to as “3D”) and in two dimensional (“2D”) ion traps whose electrodes have apertures, i.e., holes in 3D and slits in 2D. Our approximation has two parts. The first, EnoAperture, is the field obtained numerically for the trap under study with apertures artificially closed. We have used the boundary element method (BEM) for obtaining this field. The second part, EdueToAperture, is an analytical expression for the field contribution of the aperture. In EdueToAperture, aperture size is a free parameter. A key element in our approximation is the electrostatic field near an infinite thin plate with an aperture, and with different constant-valued far field intensities on either side. Compact expressions for this field can be found using separation of variables, wherein the choice of coordinate system is crucial. This field is, in turn, used four times within our trap-specific approximation. The off-axis field expressions for the 3D geometries were tested on the quadrupole ion trap (QIT) and the cylindrical ion trap (CIT), and the corresponding expressions for the 2D geometries were tested on the linear ion trap (LIT) and the rectilinear ion trap (RIT). For each geometry, we have considered apertures which are 10%, 30%, and 50% of the trap dimension. We have found that our analytical correction term EdueToAperture, though based on a classical small-aperture approximation, gives good results even for relatively large apertures.
Resumo:
In this study we present approximate analytical expressions for estimating the variation in multipole expansion coefficients as a function of the size of the apertures in the electrodes in axially symmetric (3D) and two-dimensional (2D) ion trap ion traps. Following the approach adopted in our earlier studies which focused on the role of apertures to fields within the traps, here too, the analytical expression we develop is a sum of two terms, A(n,noAperiure), the multipole expansion coefficient for a trap with no apertures and A(n,dueToAperture), the multipole expansion coefficient contributed by the aperture. A(n,noAperture) has been obtained numerically and A(n,dueToAperture) is obtained from the n th derivative of the potential within the trap. The expressions derived have been tested on two 3D geometries and two 2D geometries. These include the quadrupole ion trap (QIT) and the cylindrical ion trap (CIT) for 3D geometries and the linear ion trap (LIT) and the rectilinear ion trap (RIT) for the 2D geometries. Multipole expansion coefficients A(2) to A(12), estimated by our analytical expressions, were compared with the values obtained numerically (using the boundary element method) for aperture sizes varying up to 50% of the trap dimension. In all the plots presented, it is observed that our analytical expression for the variation of multipole expansion coefficients versus aperture size closely follows the trend of the numerical evaluations for the range of aperture sizes considered. The maximum relative percentage errors, which provide an estimate of the deviation of our values from those obtained numerically for each multipole expansion coefficient, are seen to be largely in the range of 10-15%. The leading multipole expansion coefficient, A(2), however, is seen to be estimated very well by our expressions, with most values being within 1% of the numerically determined values, with larger deviations seen for the QIT and the LIT for large aperture sizes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a technique to vary the electric field within a cylindrical ion trap (CIT) mass spectrometer while it is in operation. In this technique, the electrodes of the CIT are split into number of mini-electrodes and different voltages are applied to these split-electrodes to achieve the desired field. In our study we have investigated two geometries of the split-electrode CIT. In the first, we retain the flat endcap electrodes of the CIT but split the ring electrode into five mini-rings. In the second configuration, we split the ring electrode of the CIT into three mini-rings and also divide the endcaps into two mini-discs. By applying different potentials to the mini-rings and mini-discs of these geometries we have shown that the field within the trap can be optimized to desired values. In our study, two different types of fields were targeted. In the first, potentials were adjusted to obtain a linear electric field and, in the second, a controlled higher order even multipole field was obtained by adjusting the potential. We have shown that the different potentials required can be derived from a single RF generator by connecting appropriate capacitor terminations to split electrodes. The field within the trap can be modified by changing the values of the external capacitors. (C) 2013 Elsevier B.V. All rights reserved.